Tīpoka ki ngā ihirangi matua
Tauwehe
Tick mark Image
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

z\left(z+7\right)
Tauwehea te z.
z^{2}+7z=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
z=\frac{-7±\sqrt{7^{2}}}{2}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
z=\frac{-7±7}{2}
Tuhia te pūtakerua o te 7^{2}.
z=\frac{0}{2}
Nā, me whakaoti te whārite z=\frac{-7±7}{2} ina he tāpiri te ±. Tāpiri -7 ki te 7.
z=0
Whakawehe 0 ki te 2.
z=-\frac{14}{2}
Nā, me whakaoti te whārite z=\frac{-7±7}{2} ina he tango te ±. Tango 7 mai i -7.
z=-7
Whakawehe -14 ki te 2.
z^{2}+7z=z\left(z-\left(-7\right)\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te 0 mō te x_{1} me te -7 mō te x_{2}.
z^{2}+7z=z\left(z+7\right)
Whakamāmātia ngā kīanga katoa o te āhua p-\left(-q\right) ki te p+q.