Tīpoka ki ngā ihirangi matua
Whakaoti mō z
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

z^{2}+3z-30=2z^{2}+17z+30
Whakamahia te āhuatanga tuaritanga hei whakarea te 2z+5 ki te z+6 ka whakakotahi i ngā kupu rite.
z^{2}+3z-30-2z^{2}=17z+30
Tangohia te 2z^{2} mai i ngā taha e rua.
-z^{2}+3z-30=17z+30
Pahekotia te z^{2} me -2z^{2}, ka -z^{2}.
-z^{2}+3z-30-17z=30
Tangohia te 17z mai i ngā taha e rua.
-z^{2}-14z-30=30
Pahekotia te 3z me -17z, ka -14z.
-z^{2}-14z-30-30=0
Tangohia te 30 mai i ngā taha e rua.
-z^{2}-14z-60=0
Tangohia te 30 i te -30, ka -60.
z=\frac{-\left(-14\right)±\sqrt{\left(-14\right)^{2}-4\left(-1\right)\left(-60\right)}}{2\left(-1\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -1 mō a, -14 mō b, me -60 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
z=\frac{-\left(-14\right)±\sqrt{196-4\left(-1\right)\left(-60\right)}}{2\left(-1\right)}
Pūrua -14.
z=\frac{-\left(-14\right)±\sqrt{196+4\left(-60\right)}}{2\left(-1\right)}
Whakareatia -4 ki te -1.
z=\frac{-\left(-14\right)±\sqrt{196-240}}{2\left(-1\right)}
Whakareatia 4 ki te -60.
z=\frac{-\left(-14\right)±\sqrt{-44}}{2\left(-1\right)}
Tāpiri 196 ki te -240.
z=\frac{-\left(-14\right)±2\sqrt{11}i}{2\left(-1\right)}
Tuhia te pūtakerua o te -44.
z=\frac{14±2\sqrt{11}i}{2\left(-1\right)}
Ko te tauaro o -14 ko 14.
z=\frac{14±2\sqrt{11}i}{-2}
Whakareatia 2 ki te -1.
z=\frac{14+2\sqrt{11}i}{-2}
Nā, me whakaoti te whārite z=\frac{14±2\sqrt{11}i}{-2} ina he tāpiri te ±. Tāpiri 14 ki te 2i\sqrt{11}.
z=-\sqrt{11}i-7
Whakawehe 14+2i\sqrt{11} ki te -2.
z=\frac{-2\sqrt{11}i+14}{-2}
Nā, me whakaoti te whārite z=\frac{14±2\sqrt{11}i}{-2} ina he tango te ±. Tango 2i\sqrt{11} mai i 14.
z=-7+\sqrt{11}i
Whakawehe 14-2i\sqrt{11} ki te -2.
z=-\sqrt{11}i-7 z=-7+\sqrt{11}i
Kua oti te whārite te whakatau.
z^{2}+3z-30=2z^{2}+17z+30
Whakamahia te āhuatanga tuaritanga hei whakarea te 2z+5 ki te z+6 ka whakakotahi i ngā kupu rite.
z^{2}+3z-30-2z^{2}=17z+30
Tangohia te 2z^{2} mai i ngā taha e rua.
-z^{2}+3z-30=17z+30
Pahekotia te z^{2} me -2z^{2}, ka -z^{2}.
-z^{2}+3z-30-17z=30
Tangohia te 17z mai i ngā taha e rua.
-z^{2}-14z-30=30
Pahekotia te 3z me -17z, ka -14z.
-z^{2}-14z=30+30
Me tāpiri te 30 ki ngā taha e rua.
-z^{2}-14z=60
Tāpirihia te 30 ki te 30, ka 60.
\frac{-z^{2}-14z}{-1}=\frac{60}{-1}
Whakawehea ngā taha e rua ki te -1.
z^{2}+\left(-\frac{14}{-1}\right)z=\frac{60}{-1}
Mā te whakawehe ki te -1 ka wetekia te whakareanga ki te -1.
z^{2}+14z=\frac{60}{-1}
Whakawehe -14 ki te -1.
z^{2}+14z=-60
Whakawehe 60 ki te -1.
z^{2}+14z+7^{2}=-60+7^{2}
Whakawehea te 14, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te 7. Nā, tāpiria te pūrua o te 7 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
z^{2}+14z+49=-60+49
Pūrua 7.
z^{2}+14z+49=-11
Tāpiri -60 ki te 49.
\left(z+7\right)^{2}=-11
Tauwehea z^{2}+14z+49. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(z+7\right)^{2}}=\sqrt{-11}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
z+7=\sqrt{11}i z+7=-\sqrt{11}i
Whakarūnātia.
z=-7+\sqrt{11}i z=-\sqrt{11}i-7
Me tango 7 mai i ngā taha e rua o te whārite.