Tīpoka ki ngā ihirangi matua
Whakaoti mō z
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

z^{2}+16z+64=7
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
z^{2}+16z+64-7=7-7
Me tango 7 mai i ngā taha e rua o te whārite.
z^{2}+16z+64-7=0
Mā te tango i te 7 i a ia ake anō ka toe ko te 0.
z^{2}+16z+57=0
Tango 7 mai i 64.
z=\frac{-16±\sqrt{16^{2}-4\times 57}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 16 mō b, me 57 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
z=\frac{-16±\sqrt{256-4\times 57}}{2}
Pūrua 16.
z=\frac{-16±\sqrt{256-228}}{2}
Whakareatia -4 ki te 57.
z=\frac{-16±\sqrt{28}}{2}
Tāpiri 256 ki te -228.
z=\frac{-16±2\sqrt{7}}{2}
Tuhia te pūtakerua o te 28.
z=\frac{2\sqrt{7}-16}{2}
Nā, me whakaoti te whārite z=\frac{-16±2\sqrt{7}}{2} ina he tāpiri te ±. Tāpiri -16 ki te 2\sqrt{7}.
z=\sqrt{7}-8
Whakawehe -16+2\sqrt{7} ki te 2.
z=\frac{-2\sqrt{7}-16}{2}
Nā, me whakaoti te whārite z=\frac{-16±2\sqrt{7}}{2} ina he tango te ±. Tango 2\sqrt{7} mai i -16.
z=-\sqrt{7}-8
Whakawehe -16-2\sqrt{7} ki te 2.
z=\sqrt{7}-8 z=-\sqrt{7}-8
Kua oti te whārite te whakatau.
\left(z+8\right)^{2}=7
Tauwehea z^{2}+16z+64. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(z+8\right)^{2}}=\sqrt{7}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
z+8=\sqrt{7} z+8=-\sqrt{7}
Whakarūnātia.
z=\sqrt{7}-8 z=-\sqrt{7}-8
Me tango 8 mai i ngā taha e rua o te whārite.