Whakaoti mō z
z=2
z=7
Tohaina
Kua tāruatia ki te papatopenga
z^{2}+14-9z=0
Tangohia te 9z mai i ngā taha e rua.
z^{2}-9z+14=0
Hurinahatia te pūrau ki te āhua tānga ngahuru. Whakaraupapahia ngā kīanga tau mai i te pū teitei rawa ki te mea iti rawa.
a+b=-9 ab=14
Hei whakaoti i te whārite, whakatauwehea te z^{2}-9z+14 mā te whakamahi i te tātai z^{2}+\left(a+b\right)z+ab=\left(z+a\right)\left(z+b\right). Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,-14 -2,-7
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōraro te a+b, he tōraro hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 14.
-1-14=-15 -2-7=-9
Tātaihia te tapeke mō ia takirua.
a=-7 b=-2
Ko te otinga te takirua ka hoatu i te tapeke -9.
\left(z-7\right)\left(z-2\right)
Me tuhi anō te kīanga whakatauwehe \left(z+a\right)\left(z+b\right) mā ngā uara i tātaihia.
z=7 z=2
Hei kimi otinga whārite, me whakaoti te z-7=0 me te z-2=0.
z^{2}+14-9z=0
Tangohia te 9z mai i ngā taha e rua.
z^{2}-9z+14=0
Hurinahatia te pūrau ki te āhua tānga ngahuru. Whakaraupapahia ngā kīanga tau mai i te pū teitei rawa ki te mea iti rawa.
a+b=-9 ab=1\times 14=14
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei z^{2}+az+bz+14. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,-14 -2,-7
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōraro te a+b, he tōraro hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 14.
-1-14=-15 -2-7=-9
Tātaihia te tapeke mō ia takirua.
a=-7 b=-2
Ko te otinga te takirua ka hoatu i te tapeke -9.
\left(z^{2}-7z\right)+\left(-2z+14\right)
Tuhia anō te z^{2}-9z+14 hei \left(z^{2}-7z\right)+\left(-2z+14\right).
z\left(z-7\right)-2\left(z-7\right)
Tauwehea te z i te tuatahi me te -2 i te rōpū tuarua.
\left(z-7\right)\left(z-2\right)
Whakatauwehea atu te kīanga pātahi z-7 mā te whakamahi i te āhuatanga tātai tohatoha.
z=7 z=2
Hei kimi otinga whārite, me whakaoti te z-7=0 me te z-2=0.
z^{2}+14-9z=0
Tangohia te 9z mai i ngā taha e rua.
z^{2}-9z+14=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
z=\frac{-\left(-9\right)±\sqrt{\left(-9\right)^{2}-4\times 14}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, -9 mō b, me 14 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
z=\frac{-\left(-9\right)±\sqrt{81-4\times 14}}{2}
Pūrua -9.
z=\frac{-\left(-9\right)±\sqrt{81-56}}{2}
Whakareatia -4 ki te 14.
z=\frac{-\left(-9\right)±\sqrt{25}}{2}
Tāpiri 81 ki te -56.
z=\frac{-\left(-9\right)±5}{2}
Tuhia te pūtakerua o te 25.
z=\frac{9±5}{2}
Ko te tauaro o -9 ko 9.
z=\frac{14}{2}
Nā, me whakaoti te whārite z=\frac{9±5}{2} ina he tāpiri te ±. Tāpiri 9 ki te 5.
z=7
Whakawehe 14 ki te 2.
z=\frac{4}{2}
Nā, me whakaoti te whārite z=\frac{9±5}{2} ina he tango te ±. Tango 5 mai i 9.
z=2
Whakawehe 4 ki te 2.
z=7 z=2
Kua oti te whārite te whakatau.
z^{2}+14-9z=0
Tangohia te 9z mai i ngā taha e rua.
z^{2}-9z=-14
Tangohia te 14 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
z^{2}-9z+\left(-\frac{9}{2}\right)^{2}=-14+\left(-\frac{9}{2}\right)^{2}
Whakawehea te -9, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{9}{2}. Nā, tāpiria te pūrua o te -\frac{9}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
z^{2}-9z+\frac{81}{4}=-14+\frac{81}{4}
Pūruatia -\frac{9}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
z^{2}-9z+\frac{81}{4}=\frac{25}{4}
Tāpiri -14 ki te \frac{81}{4}.
\left(z-\frac{9}{2}\right)^{2}=\frac{25}{4}
Tauwehea z^{2}-9z+\frac{81}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(z-\frac{9}{2}\right)^{2}}=\sqrt{\frac{25}{4}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
z-\frac{9}{2}=\frac{5}{2} z-\frac{9}{2}=-\frac{5}{2}
Whakarūnātia.
z=7 z=2
Me tāpiri \frac{9}{2} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}