Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

z\left(y^{2}+1\right)=xy\left(y^{2}+1\right)+e^{y}
Whakareatia ngā taha e rua o te whārite ki te y^{2}+1.
zy^{2}+z=xy\left(y^{2}+1\right)+e^{y}
Whakamahia te āhuatanga tohatoha hei whakarea te z ki te y^{2}+1.
zy^{2}+z=xy^{3}+xy+e^{y}
Whakamahia te āhuatanga tohatoha hei whakarea te xy ki te y^{2}+1.
xy^{3}+xy+e^{y}=zy^{2}+z
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
xy^{3}+xy=zy^{2}+z-e^{y}
Tangohia te e^{y} mai i ngā taha e rua.
\left(y^{3}+y\right)x=zy^{2}+z-e^{y}
Pahekotia ngā kīanga tau katoa e whai ana i te x.
\frac{\left(y^{3}+y\right)x}{y^{3}+y}=\frac{zy^{2}+z-e^{y}}{y^{3}+y}
Whakawehea ngā taha e rua ki te y^{3}+y.
x=\frac{zy^{2}+z-e^{y}}{y^{3}+y}
Mā te whakawehe ki te y^{3}+y ka wetekia te whakareanga ki te y^{3}+y.
x=\frac{zy^{2}+z-e^{y}}{y\left(y^{2}+1\right)}
Whakawehe zy^{2}+z-e^{y} ki te y^{3}+y.