Tīpoka ki ngā ihirangi matua
Whakaoti mō x (complex solution)
Tick mark Image
Whakaoti mō y (complex solution)
Tick mark Image
Whakaoti mō x
Tick mark Image
Whakaoti mō y
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

-2xy=z
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
\left(-2y\right)x=z
He hanga arowhānui tō te whārite.
\frac{\left(-2y\right)x}{-2y}=\frac{z}{-2y}
Whakawehea ngā taha e rua ki te -2y.
x=\frac{z}{-2y}
Mā te whakawehe ki te -2y ka wetekia te whakareanga ki te -2y.
x=-\frac{z}{2y}
Whakawehe z ki te -2y.
-2xy=z
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
\left(-2x\right)y=z
He hanga arowhānui tō te whārite.
\frac{\left(-2x\right)y}{-2x}=\frac{z}{-2x}
Whakawehea ngā taha e rua ki te -2x.
y=\frac{z}{-2x}
Mā te whakawehe ki te -2x ka wetekia te whakareanga ki te -2x.
y=-\frac{z}{2x}
Whakawehe z ki te -2x.
-2xy=z
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
\left(-2y\right)x=z
He hanga arowhānui tō te whārite.
\frac{\left(-2y\right)x}{-2y}=\frac{z}{-2y}
Whakawehea ngā taha e rua ki te -2y.
x=\frac{z}{-2y}
Mā te whakawehe ki te -2y ka wetekia te whakareanga ki te -2y.
x=-\frac{z}{2y}
Whakawehe z ki te -2y.
-2xy=z
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
\left(-2x\right)y=z
He hanga arowhānui tō te whārite.
\frac{\left(-2x\right)y}{-2x}=\frac{z}{-2x}
Whakawehea ngā taha e rua ki te -2x.
y=\frac{z}{-2x}
Mā te whakawehe ki te -2x ka wetekia te whakareanga ki te -2x.
y=-\frac{z}{2x}
Whakawehe z ki te -2x.