Whakaoti mō a
a=\left(-\frac{1}{2}+\frac{1}{2}i\right)z+\left(-1+4i\right)
Whakaoti mō z
z=\left(-1-i\right)a+\left(-5+3i\right)
Tohaina
Kua tāruatia ki te papatopenga
z=\left(a+5\right)\left(-1\right)+\left(a-3\right)i^{7}
Tātaihia te i mā te pū o 6, kia riro ko -1.
z=-a-5+\left(a-3\right)i^{7}
Whakamahia te āhuatanga tohatoha hei whakarea te a+5 ki te -1.
z=-a-5+\left(a-3\right)\left(-i\right)
Tātaihia te i mā te pū o 7, kia riro ko -i.
z=-a-5-ia+3i
Whakamahia te āhuatanga tohatoha hei whakarea te a-3 ki te -i.
z=\left(-1-i\right)a-5+3i
Pahekotia te -a me -ia, ka \left(-1-i\right)a.
\left(-1-i\right)a-5+3i=z
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
\left(-1-i\right)a+3i=z+5
Me tāpiri te 5 ki ngā taha e rua.
\left(-1-i\right)a=z+5-3i
Tangohia te 3i mai i ngā taha e rua.
\left(-1-i\right)a=z+\left(5-3i\right)
He hanga arowhānui tō te whārite.
\frac{\left(-1-i\right)a}{-1-i}=\frac{z+\left(5-3i\right)}{-1-i}
Whakawehea ngā taha e rua ki te -1-i.
a=\frac{z+\left(5-3i\right)}{-1-i}
Mā te whakawehe ki te -1-i ka wetekia te whakareanga ki te -1-i.
a=\left(-\frac{1}{2}+\frac{1}{2}i\right)z+\left(-1+4i\right)
Whakawehe z+\left(5-3i\right) ki te -1-i.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}