Tīpoka ki ngā ihirangi matua
Whakaoti mō a
Tick mark Image
Whakaoti mō z
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

z=\left(a+5\right)\left(-1\right)+\left(a-3\right)i^{7}
Tātaihia te i mā te pū o 6, kia riro ko -1.
z=-a-5+\left(a-3\right)i^{7}
Whakamahia te āhuatanga tohatoha hei whakarea te a+5 ki te -1.
z=-a-5+\left(a-3\right)\left(-i\right)
Tātaihia te i mā te pū o 7, kia riro ko -i.
z=-a-5-ia+3i
Whakamahia te āhuatanga tohatoha hei whakarea te a-3 ki te -i.
z=\left(-1-i\right)a-5+3i
Pahekotia te -a me -ia, ka \left(-1-i\right)a.
\left(-1-i\right)a-5+3i=z
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
\left(-1-i\right)a+3i=z+5
Me tāpiri te 5 ki ngā taha e rua.
\left(-1-i\right)a=z+5-3i
Tangohia te 3i mai i ngā taha e rua.
\left(-1-i\right)a=z+\left(5-3i\right)
He hanga arowhānui tō te whārite.
\frac{\left(-1-i\right)a}{-1-i}=\frac{z+\left(5-3i\right)}{-1-i}
Whakawehea ngā taha e rua ki te -1-i.
a=\frac{z+\left(5-3i\right)}{-1-i}
Mā te whakawehe ki te -1-i ka wetekia te whakareanga ki te -1-i.
a=\left(-\frac{1}{2}+\frac{1}{2}i\right)z+\left(-1+4i\right)
Whakawehe z+\left(5-3i\right) ki te -1-i.