Tīpoka ki ngā ihirangi matua
Whakaoti mō z
Tick mark Image
Tautapa z
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

z=\frac{\left(4-2i\right)\left(1-i\right)}{\left(1+i\right)\left(1-i\right)}
Me whakarea te taurunga me te tauraro o \frac{4-2i}{1+i} ki te haumi hiato o te tauraro, 1-i.
z=\frac{\left(4-2i\right)\left(1-i\right)}{1^{2}-i^{2}}
Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
z=\frac{\left(4-2i\right)\left(1-i\right)}{2}
Hei tōna tikanga, ko te i^{2} ko -1. Tātaitia te tauraro.
z=\frac{4\times 1+4\left(-i\right)-2i-2\left(-1\right)i^{2}}{2}
Me whakarea ngā tau matatini 4-2i me 1-i pēnā i te whakarea huarua.
z=\frac{4\times 1+4\left(-i\right)-2i-2\left(-1\right)\left(-1\right)}{2}
Hei tōna tikanga, ko te i^{2} ko -1.
z=\frac{4-4i-2i-2}{2}
Mahia ngā whakarea i roto o 4\times 1+4\left(-i\right)-2i-2\left(-1\right)\left(-1\right).
z=\frac{4-2+\left(-4-2\right)i}{2}
Whakakotahitia ngā wāhi tūturu me ngā wāhi pōhewa ki 4-4i-2i-2.
z=\frac{2-6i}{2}
Mahia ngā tāpiri i roto o 4-2+\left(-4-2\right)i.
z=1-3i
Whakawehea te 2-6i ki te 2, kia riro ko 1-3i.