Tīpoka ki ngā ihirangi matua
Whakaoti mō t
Tick mark Image
Whakaoti mō z
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

z=\left(6+2i\right)t-\left(5-3i\right)\left(2+3i\right)^{2}+\left(1+i\right)^{5}
Whakawehea te 20t ki te 3-i, kia riro ko \left(6+2i\right)t.
z=\left(6+2i\right)t-\left(5-3i\right)\left(-5+12i\right)+\left(1+i\right)^{5}
Tātaihia te 2+3i mā te pū o 2, kia riro ko -5+12i.
z=\left(6+2i\right)t-\left(11+75i\right)+\left(1+i\right)^{5}
Whakareatia te 5-3i ki te -5+12i, ka 11+75i.
z=\left(6+2i\right)t-\left(11+75i\right)+\left(-4-4i\right)
Tātaihia te 1+i mā te pū o 5, kia riro ko -4-4i.
\left(6+2i\right)t-\left(11+75i\right)+\left(-4-4i\right)=z
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
\left(6+2i\right)t-\left(11+75i\right)=z+\left(4+4i\right)
Me tāpiri te 4+4i ki ngā taha e rua.
\left(6+2i\right)t=z+\left(4+4i\right)+\left(11+75i\right)
Me tāpiri te 11+75i ki ngā taha e rua.
\left(6+2i\right)t=z+15+79i
Mahia ngā tāpiri i roto o 4+4i+\left(11+75i\right).
\left(6+2i\right)t=z+\left(15+79i\right)
He hanga arowhānui tō te whārite.
\frac{\left(6+2i\right)t}{6+2i}=\frac{z+\left(15+79i\right)}{6+2i}
Whakawehea ngā taha e rua ki te 6+2i.
t=\frac{z+\left(15+79i\right)}{6+2i}
Mā te whakawehe ki te 6+2i ka wetekia te whakareanga ki te 6+2i.
t=\left(\frac{3}{20}-\frac{1}{20}i\right)z+\left(\frac{31}{5}+\frac{111}{10}i\right)
Whakawehe z+\left(15+79i\right) ki te 6+2i.