Whakaoti mō z
z=-6
z=-1
Tohaina
Kua tāruatia ki te papatopenga
zz+6=-7z
Tē taea kia ōrite te tāupe z ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te z.
z^{2}+6=-7z
Whakareatia te z ki te z, ka z^{2}.
z^{2}+6+7z=0
Me tāpiri te 7z ki ngā taha e rua.
z^{2}+7z+6=0
Hurinahatia te pūrau ki te āhua tānga ngahuru. Whakaraupapahia ngā kīanga tau mai i te pū teitei rawa ki te mea iti rawa.
a+b=7 ab=6
Hei whakaoti i te whārite, whakatauwehea te z^{2}+7z+6 mā te whakamahi i te tātai z^{2}+\left(a+b\right)z+ab=\left(z+a\right)\left(z+b\right). Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,6 2,3
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōrunga te a+b, he tōrunga hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 6.
1+6=7 2+3=5
Tātaihia te tapeke mō ia takirua.
a=1 b=6
Ko te otinga te takirua ka hoatu i te tapeke 7.
\left(z+1\right)\left(z+6\right)
Me tuhi anō te kīanga whakatauwehe \left(z+a\right)\left(z+b\right) mā ngā uara i tātaihia.
z=-1 z=-6
Hei kimi otinga whārite, me whakaoti te z+1=0 me te z+6=0.
zz+6=-7z
Tē taea kia ōrite te tāupe z ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te z.
z^{2}+6=-7z
Whakareatia te z ki te z, ka z^{2}.
z^{2}+6+7z=0
Me tāpiri te 7z ki ngā taha e rua.
z^{2}+7z+6=0
Hurinahatia te pūrau ki te āhua tānga ngahuru. Whakaraupapahia ngā kīanga tau mai i te pū teitei rawa ki te mea iti rawa.
a+b=7 ab=1\times 6=6
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei z^{2}+az+bz+6. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,6 2,3
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōrunga te a+b, he tōrunga hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 6.
1+6=7 2+3=5
Tātaihia te tapeke mō ia takirua.
a=1 b=6
Ko te otinga te takirua ka hoatu i te tapeke 7.
\left(z^{2}+z\right)+\left(6z+6\right)
Tuhia anō te z^{2}+7z+6 hei \left(z^{2}+z\right)+\left(6z+6\right).
z\left(z+1\right)+6\left(z+1\right)
Tauwehea te z i te tuatahi me te 6 i te rōpū tuarua.
\left(z+1\right)\left(z+6\right)
Whakatauwehea atu te kīanga pātahi z+1 mā te whakamahi i te āhuatanga tātai tohatoha.
z=-1 z=-6
Hei kimi otinga whārite, me whakaoti te z+1=0 me te z+6=0.
zz+6=-7z
Tē taea kia ōrite te tāupe z ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te z.
z^{2}+6=-7z
Whakareatia te z ki te z, ka z^{2}.
z^{2}+6+7z=0
Me tāpiri te 7z ki ngā taha e rua.
z^{2}+7z+6=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
z=\frac{-7±\sqrt{7^{2}-4\times 6}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 7 mō b, me 6 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
z=\frac{-7±\sqrt{49-4\times 6}}{2}
Pūrua 7.
z=\frac{-7±\sqrt{49-24}}{2}
Whakareatia -4 ki te 6.
z=\frac{-7±\sqrt{25}}{2}
Tāpiri 49 ki te -24.
z=\frac{-7±5}{2}
Tuhia te pūtakerua o te 25.
z=-\frac{2}{2}
Nā, me whakaoti te whārite z=\frac{-7±5}{2} ina he tāpiri te ±. Tāpiri -7 ki te 5.
z=-1
Whakawehe -2 ki te 2.
z=-\frac{12}{2}
Nā, me whakaoti te whārite z=\frac{-7±5}{2} ina he tango te ±. Tango 5 mai i -7.
z=-6
Whakawehe -12 ki te 2.
z=-1 z=-6
Kua oti te whārite te whakatau.
zz+6=-7z
Tē taea kia ōrite te tāupe z ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te z.
z^{2}+6=-7z
Whakareatia te z ki te z, ka z^{2}.
z^{2}+6+7z=0
Me tāpiri te 7z ki ngā taha e rua.
z^{2}+7z=-6
Tangohia te 6 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
z^{2}+7z+\left(\frac{7}{2}\right)^{2}=-6+\left(\frac{7}{2}\right)^{2}
Whakawehea te 7, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{7}{2}. Nā, tāpiria te pūrua o te \frac{7}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
z^{2}+7z+\frac{49}{4}=-6+\frac{49}{4}
Pūruatia \frac{7}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
z^{2}+7z+\frac{49}{4}=\frac{25}{4}
Tāpiri -6 ki te \frac{49}{4}.
\left(z+\frac{7}{2}\right)^{2}=\frac{25}{4}
Tauwehea z^{2}+7z+\frac{49}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(z+\frac{7}{2}\right)^{2}}=\sqrt{\frac{25}{4}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
z+\frac{7}{2}=\frac{5}{2} z+\frac{7}{2}=-\frac{5}{2}
Whakarūnātia.
z=-1 z=-6
Me tango \frac{7}{2} mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}