Whakaoti mō x
x=\frac{y+1}{2}
Whakaoti mō y
y=2x-1
Graph
Tohaina
Kua tāruatia ki te papatopenga
y-11+2x=2y-3x+3x-10
Tangohia te 5 i te -6, ka -11.
y-11+2x=2y-10
Pahekotia te -3x me 3x, ka 0.
-11+2x=2y-10-y
Tangohia te y mai i ngā taha e rua.
-11+2x=y-10
Pahekotia te 2y me -y, ka y.
2x=y-10+11
Me tāpiri te 11 ki ngā taha e rua.
2x=y+1
Tāpirihia te -10 ki te 11, ka 1.
\frac{2x}{2}=\frac{y+1}{2}
Whakawehea ngā taha e rua ki te 2.
x=\frac{y+1}{2}
Mā te whakawehe ki te 2 ka wetekia te whakareanga ki te 2.
y-11+2x=2y-3x+3x-10
Tangohia te 5 i te -6, ka -11.
y-11+2x=2y-10
Pahekotia te -3x me 3x, ka 0.
y-11+2x-2y=-10
Tangohia te 2y mai i ngā taha e rua.
-y-11+2x=-10
Pahekotia te y me -2y, ka -y.
-y+2x=-10+11
Me tāpiri te 11 ki ngā taha e rua.
-y+2x=1
Tāpirihia te -10 ki te 11, ka 1.
-y=1-2x
Tangohia te 2x mai i ngā taha e rua.
\frac{-y}{-1}=\frac{1-2x}{-1}
Whakawehea ngā taha e rua ki te -1.
y=\frac{1-2x}{-1}
Mā te whakawehe ki te -1 ka wetekia te whakareanga ki te -1.
y=2x-1
Whakawehe 1-2x ki te -1.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}