Whakaoti mō x
x=-\frac{y-2}{y+1}
y\neq -1
Whakaoti mō y
y=-\frac{x-2}{x+1}
x\neq -1
Graph
Tohaina
Kua tāruatia ki te papatopenga
y\left(x+1\right)=\left(x+1\right)\left(-1\right)+3
Tē taea kia ōrite te tāupe x ki -1 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te x+1.
yx+y=\left(x+1\right)\left(-1\right)+3
Whakamahia te āhuatanga tohatoha hei whakarea te y ki te x+1.
yx+y=-x-1+3
Whakamahia te āhuatanga tohatoha hei whakarea te x+1 ki te -1.
yx+y=-x+2
Tāpirihia te -1 ki te 3, ka 2.
yx+y+x=2
Me tāpiri te x ki ngā taha e rua.
yx+x=2-y
Tangohia te y mai i ngā taha e rua.
\left(y+1\right)x=2-y
Pahekotia ngā kīanga tau katoa e whai ana i te x.
\frac{\left(y+1\right)x}{y+1}=\frac{2-y}{y+1}
Whakawehea ngā taha e rua ki te y+1.
x=\frac{2-y}{y+1}
Mā te whakawehe ki te y+1 ka wetekia te whakareanga ki te y+1.
x=\frac{2-y}{y+1}\text{, }x\neq -1
Tē taea kia ōrite te tāupe x ki -1.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}