Whakaoti mō x
x=\frac{2500\left(y+500\right)}{50y-21}
y\neq \frac{21}{50}
Whakaoti mō y
y=\frac{21x+1250000}{50\left(x-50\right)}
x\neq 50
Graph
Tohaina
Kua tāruatia ki te papatopenga
y\left(x-50\right)=25000+0.42x
Tē taea kia ōrite te tāupe x ki 50 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te x-50.
yx-50y=25000+0.42x
Whakamahia te āhuatanga tohatoha hei whakarea te y ki te x-50.
yx-50y-0.42x=25000
Tangohia te 0.42x mai i ngā taha e rua.
yx-0.42x=25000+50y
Me tāpiri te 50y ki ngā taha e rua.
\left(y-0.42\right)x=25000+50y
Pahekotia ngā kīanga tau katoa e whai ana i te x.
\left(y-\frac{21}{50}\right)x=50y+25000
He hanga arowhānui tō te whārite.
\frac{\left(y-\frac{21}{50}\right)x}{y-\frac{21}{50}}=\frac{50y+25000}{y-\frac{21}{50}}
Whakawehea ngā taha e rua ki te y-\frac{21}{50}.
x=\frac{50y+25000}{y-\frac{21}{50}}
Mā te whakawehe ki te y-\frac{21}{50} ka wetekia te whakareanga ki te y-\frac{21}{50}.
x=\frac{2500\left(y+500\right)}{50y-21}
Whakawehe 25000+50y ki te y-\frac{21}{50}.
x=\frac{2500\left(y+500\right)}{50y-21}\text{, }x\neq 50
Tē taea kia ōrite te tāupe x ki 50.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}