Whakaoti mō x
x=-\pi ^{-\frac{1}{e}}\left(e-y\right)
Whakaoti mō y
y=\pi ^{\frac{1}{e}}x+e
Graph
Tohaina
Kua tāruatia ki te papatopenga
\sqrt[e]{\pi }x+e=y
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
\sqrt[e]{\pi }x=y-e
Tangohia te e mai i ngā taha e rua.
\frac{\sqrt[e]{\pi }x}{\sqrt[e]{\pi }}=\frac{y-e}{\sqrt[e]{\pi }}
Whakawehea ngā taha e rua ki te \sqrt[e]{\pi }.
x=\frac{y-e}{\sqrt[e]{\pi }}
Mā te whakawehe ki te \sqrt[e]{\pi } ka wetekia te whakareanga ki te \sqrt[e]{\pi }.
x=\pi ^{-\frac{1}{e}}\left(y-e\right)
Whakawehe y-e ki te \sqrt[e]{\pi }.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}