Whakaoti mō y
y = \frac{\sqrt{13} + 2}{3} \approx 1.868517092
y=\frac{2-\sqrt{13}}{3}\approx -0.535183758
Graph
Tohaina
Kua tāruatia ki te papatopenga
y-\frac{2y+3}{3y-2}=0
Tangohia te \frac{2y+3}{3y-2} mai i ngā taha e rua.
\frac{y\left(3y-2\right)}{3y-2}-\frac{2y+3}{3y-2}=0
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia y ki te \frac{3y-2}{3y-2}.
\frac{y\left(3y-2\right)-\left(2y+3\right)}{3y-2}=0
Tā te mea he rite te tauraro o \frac{y\left(3y-2\right)}{3y-2} me \frac{2y+3}{3y-2}, me tango rāua mā te tango i ō raua taurunga.
\frac{3y^{2}-2y-2y-3}{3y-2}=0
Mahia ngā whakarea i roto o y\left(3y-2\right)-\left(2y+3\right).
\frac{3y^{2}-4y-3}{3y-2}=0
Whakakotahitia ngā kupu rite i 3y^{2}-2y-2y-3.
3y^{2}-4y-3=0
Tē taea kia ōrite te tāupe y ki \frac{2}{3} nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te 3y-2.
y=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\times 3\left(-3\right)}}{2\times 3}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 3 mō a, -4 mō b, me -3 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-\left(-4\right)±\sqrt{16-4\times 3\left(-3\right)}}{2\times 3}
Pūrua -4.
y=\frac{-\left(-4\right)±\sqrt{16-12\left(-3\right)}}{2\times 3}
Whakareatia -4 ki te 3.
y=\frac{-\left(-4\right)±\sqrt{16+36}}{2\times 3}
Whakareatia -12 ki te -3.
y=\frac{-\left(-4\right)±\sqrt{52}}{2\times 3}
Tāpiri 16 ki te 36.
y=\frac{-\left(-4\right)±2\sqrt{13}}{2\times 3}
Tuhia te pūtakerua o te 52.
y=\frac{4±2\sqrt{13}}{2\times 3}
Ko te tauaro o -4 ko 4.
y=\frac{4±2\sqrt{13}}{6}
Whakareatia 2 ki te 3.
y=\frac{2\sqrt{13}+4}{6}
Nā, me whakaoti te whārite y=\frac{4±2\sqrt{13}}{6} ina he tāpiri te ±. Tāpiri 4 ki te 2\sqrt{13}.
y=\frac{\sqrt{13}+2}{3}
Whakawehe 4+2\sqrt{13} ki te 6.
y=\frac{4-2\sqrt{13}}{6}
Nā, me whakaoti te whārite y=\frac{4±2\sqrt{13}}{6} ina he tango te ±. Tango 2\sqrt{13} mai i 4.
y=\frac{2-\sqrt{13}}{3}
Whakawehe 4-2\sqrt{13} ki te 6.
y=\frac{\sqrt{13}+2}{3} y=\frac{2-\sqrt{13}}{3}
Kua oti te whārite te whakatau.
y-\frac{2y+3}{3y-2}=0
Tangohia te \frac{2y+3}{3y-2} mai i ngā taha e rua.
\frac{y\left(3y-2\right)}{3y-2}-\frac{2y+3}{3y-2}=0
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia y ki te \frac{3y-2}{3y-2}.
\frac{y\left(3y-2\right)-\left(2y+3\right)}{3y-2}=0
Tā te mea he rite te tauraro o \frac{y\left(3y-2\right)}{3y-2} me \frac{2y+3}{3y-2}, me tango rāua mā te tango i ō raua taurunga.
\frac{3y^{2}-2y-2y-3}{3y-2}=0
Mahia ngā whakarea i roto o y\left(3y-2\right)-\left(2y+3\right).
\frac{3y^{2}-4y-3}{3y-2}=0
Whakakotahitia ngā kupu rite i 3y^{2}-2y-2y-3.
3y^{2}-4y-3=0
Tē taea kia ōrite te tāupe y ki \frac{2}{3} nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te 3y-2.
3y^{2}-4y=3
Me tāpiri te 3 ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
\frac{3y^{2}-4y}{3}=\frac{3}{3}
Whakawehea ngā taha e rua ki te 3.
y^{2}-\frac{4}{3}y=\frac{3}{3}
Mā te whakawehe ki te 3 ka wetekia te whakareanga ki te 3.
y^{2}-\frac{4}{3}y=1
Whakawehe 3 ki te 3.
y^{2}-\frac{4}{3}y+\left(-\frac{2}{3}\right)^{2}=1+\left(-\frac{2}{3}\right)^{2}
Whakawehea te -\frac{4}{3}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{2}{3}. Nā, tāpiria te pūrua o te -\frac{2}{3} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
y^{2}-\frac{4}{3}y+\frac{4}{9}=1+\frac{4}{9}
Pūruatia -\frac{2}{3} mā te pūrua i te taurunga me te tauraro o te hautanga.
y^{2}-\frac{4}{3}y+\frac{4}{9}=\frac{13}{9}
Tāpiri 1 ki te \frac{4}{9}.
\left(y-\frac{2}{3}\right)^{2}=\frac{13}{9}
Tauwehea y^{2}-\frac{4}{3}y+\frac{4}{9}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(y-\frac{2}{3}\right)^{2}}=\sqrt{\frac{13}{9}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
y-\frac{2}{3}=\frac{\sqrt{13}}{3} y-\frac{2}{3}=-\frac{\sqrt{13}}{3}
Whakarūnātia.
y=\frac{\sqrt{13}+2}{3} y=\frac{2-\sqrt{13}}{3}
Me tāpiri \frac{2}{3} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}