Whakaoti mō y
y=-\frac{50500\sqrt{101}}{3}+22732\approx -146440.906288868
Tautapa y
y≔-\frac{50500\sqrt{101}}{3}+22732
Graph
Tohaina
Kua tāruatia ki te papatopenga
y=2525\left(-\frac{4}{3}\right)\sqrt{2525}+9\times 2525+7
Ka taea te hautanga \frac{-4}{3} te tuhi anō ko -\frac{4}{3} mā te tango i te tohu tōraro.
y=\frac{2525\left(-4\right)}{3}\sqrt{2525}+9\times 2525+7
Tuhia te 2525\left(-\frac{4}{3}\right) hei hautanga kotahi.
y=\frac{-10100}{3}\sqrt{2525}+9\times 2525+7
Whakareatia te 2525 ki te -4, ka -10100.
y=-\frac{10100}{3}\sqrt{2525}+9\times 2525+7
Ka taea te hautanga \frac{-10100}{3} te tuhi anō ko -\frac{10100}{3} mā te tango i te tohu tōraro.
y=-\frac{10100}{3}\times 5\sqrt{101}+9\times 2525+7
Tauwehea te 2525=5^{2}\times 101. Tuhia anō te pūtake rua o te hua \sqrt{5^{2}\times 101} hei hua o ngā pūtake rua \sqrt{5^{2}}\sqrt{101}. Tuhia te pūtakerua o te 5^{2}.
y=\frac{-10100\times 5}{3}\sqrt{101}+9\times 2525+7
Tuhia te -\frac{10100}{3}\times 5 hei hautanga kotahi.
y=\frac{-50500}{3}\sqrt{101}+9\times 2525+7
Whakareatia te -10100 ki te 5, ka -50500.
y=-\frac{50500}{3}\sqrt{101}+9\times 2525+7
Ka taea te hautanga \frac{-50500}{3} te tuhi anō ko -\frac{50500}{3} mā te tango i te tohu tōraro.
y=-\frac{50500}{3}\sqrt{101}+22725+7
Whakareatia te 9 ki te 2525, ka 22725.
y=-\frac{50500}{3}\sqrt{101}+22732
Tāpirihia te 22725 ki te 7, ka 22732.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}