Whakaoti mō y
y=\frac{1}{3628800}\approx 0.000000276
Tautapa y
y≔\frac{1}{3628800}
Graph
Tohaina
Kua tāruatia ki te papatopenga
y=\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{1}{2\times 3}}{4}}{5}}{6}}{7}}{8}}{9}}{10}
Tuhia te \frac{\frac{1}{2}}{3} hei hautanga kotahi.
y=\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{1}{6}}{4}}{5}}{6}}{7}}{8}}{9}}{10}
Whakareatia te 2 ki te 3, ka 6.
y=\frac{\frac{\frac{\frac{\frac{\frac{\frac{1}{6\times 4}}{5}}{6}}{7}}{8}}{9}}{10}
Tuhia te \frac{\frac{1}{6}}{4} hei hautanga kotahi.
y=\frac{\frac{\frac{\frac{\frac{\frac{\frac{1}{24}}{5}}{6}}{7}}{8}}{9}}{10}
Whakareatia te 6 ki te 4, ka 24.
y=\frac{\frac{\frac{\frac{\frac{\frac{1}{24\times 5}}{6}}{7}}{8}}{9}}{10}
Tuhia te \frac{\frac{1}{24}}{5} hei hautanga kotahi.
y=\frac{\frac{\frac{\frac{\frac{\frac{1}{120}}{6}}{7}}{8}}{9}}{10}
Whakareatia te 24 ki te 5, ka 120.
y=\frac{\frac{\frac{\frac{\frac{1}{120\times 6}}{7}}{8}}{9}}{10}
Tuhia te \frac{\frac{1}{120}}{6} hei hautanga kotahi.
y=\frac{\frac{\frac{\frac{\frac{1}{720}}{7}}{8}}{9}}{10}
Whakareatia te 120 ki te 6, ka 720.
y=\frac{\frac{\frac{\frac{1}{720\times 7}}{8}}{9}}{10}
Tuhia te \frac{\frac{1}{720}}{7} hei hautanga kotahi.
y=\frac{\frac{\frac{\frac{1}{5040}}{8}}{9}}{10}
Whakareatia te 720 ki te 7, ka 5040.
y=\frac{\frac{\frac{1}{5040\times 8}}{9}}{10}
Tuhia te \frac{\frac{1}{5040}}{8} hei hautanga kotahi.
y=\frac{\frac{\frac{1}{40320}}{9}}{10}
Whakareatia te 5040 ki te 8, ka 40320.
y=\frac{\frac{1}{40320\times 9}}{10}
Tuhia te \frac{\frac{1}{40320}}{9} hei hautanga kotahi.
y=\frac{\frac{1}{362880}}{10}
Whakareatia te 40320 ki te 9, ka 362880.
y=\frac{1}{362880\times 10}
Tuhia te \frac{\frac{1}{362880}}{10} hei hautanga kotahi.
y=\frac{1}{3628800}
Whakareatia te 362880 ki te 10, ka 3628800.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}