Tīpoka ki ngā ihirangi matua
Whakaoti mō y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

2y+2y^{2}=4
Pahekotia te y me y, ka 2y.
2y+2y^{2}-4=0
Tangohia te 4 mai i ngā taha e rua.
y+y^{2}-2=0
Whakawehea ngā taha e rua ki te 2.
y^{2}+y-2=0
Hurinahatia te pūrau ki te āhua tānga ngahuru. Whakaraupapahia ngā kīanga tau mai i te pū teitei rawa ki te mea iti rawa.
a+b=1 ab=1\left(-2\right)=-2
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei y^{2}+ay+by-2. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
a=-1 b=2
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōrunga te a+b, he nui ake te uara pū o te tau tōrunga i tō te tōraro. Ko te takirua anake pērā ko te otinga pūnaha.
\left(y^{2}-y\right)+\left(2y-2\right)
Tuhia anō te y^{2}+y-2 hei \left(y^{2}-y\right)+\left(2y-2\right).
y\left(y-1\right)+2\left(y-1\right)
Tauwehea te y i te tuatahi me te 2 i te rōpū tuarua.
\left(y-1\right)\left(y+2\right)
Whakatauwehea atu te kīanga pātahi y-1 mā te whakamahi i te āhuatanga tātai tohatoha.
y=1 y=-2
Hei kimi otinga whārite, me whakaoti te y-1=0 me te y+2=0.
2y+2y^{2}=4
Pahekotia te y me y, ka 2y.
2y+2y^{2}-4=0
Tangohia te 4 mai i ngā taha e rua.
2y^{2}+2y-4=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
y=\frac{-2±\sqrt{2^{2}-4\times 2\left(-4\right)}}{2\times 2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 2 mō a, 2 mō b, me -4 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-2±\sqrt{4-4\times 2\left(-4\right)}}{2\times 2}
Pūrua 2.
y=\frac{-2±\sqrt{4-8\left(-4\right)}}{2\times 2}
Whakareatia -4 ki te 2.
y=\frac{-2±\sqrt{4+32}}{2\times 2}
Whakareatia -8 ki te -4.
y=\frac{-2±\sqrt{36}}{2\times 2}
Tāpiri 4 ki te 32.
y=\frac{-2±6}{2\times 2}
Tuhia te pūtakerua o te 36.
y=\frac{-2±6}{4}
Whakareatia 2 ki te 2.
y=\frac{4}{4}
Nā, me whakaoti te whārite y=\frac{-2±6}{4} ina he tāpiri te ±. Tāpiri -2 ki te 6.
y=1
Whakawehe 4 ki te 4.
y=-\frac{8}{4}
Nā, me whakaoti te whārite y=\frac{-2±6}{4} ina he tango te ±. Tango 6 mai i -2.
y=-2
Whakawehe -8 ki te 4.
y=1 y=-2
Kua oti te whārite te whakatau.
2y+2y^{2}=4
Pahekotia te y me y, ka 2y.
2y^{2}+2y=4
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{2y^{2}+2y}{2}=\frac{4}{2}
Whakawehea ngā taha e rua ki te 2.
y^{2}+\frac{2}{2}y=\frac{4}{2}
Mā te whakawehe ki te 2 ka wetekia te whakareanga ki te 2.
y^{2}+y=\frac{4}{2}
Whakawehe 2 ki te 2.
y^{2}+y=2
Whakawehe 4 ki te 2.
y^{2}+y+\left(\frac{1}{2}\right)^{2}=2+\left(\frac{1}{2}\right)^{2}
Whakawehea te 1, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{1}{2}. Nā, tāpiria te pūrua o te \frac{1}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
y^{2}+y+\frac{1}{4}=2+\frac{1}{4}
Pūruatia \frac{1}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
y^{2}+y+\frac{1}{4}=\frac{9}{4}
Tāpiri 2 ki te \frac{1}{4}.
\left(y+\frac{1}{2}\right)^{2}=\frac{9}{4}
Tauwehea y^{2}+y+\frac{1}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(y+\frac{1}{2}\right)^{2}}=\sqrt{\frac{9}{4}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
y+\frac{1}{2}=\frac{3}{2} y+\frac{1}{2}=-\frac{3}{2}
Whakarūnātia.
y=1 y=-2
Me tango \frac{1}{2} mai i ngā taha e rua o te whārite.