Tīpoka ki ngā ihirangi matua
Whakaoti mō n
Tick mark Image
Whakaoti mō y_n
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

y_{n}\left(2n+1\right)=2n-1
Tē taea kia ōrite te tāupe n ki -\frac{1}{2} nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te 2n+1.
2y_{n}n+y_{n}=2n-1
Whakamahia te āhuatanga tohatoha hei whakarea te y_{n} ki te 2n+1.
2y_{n}n+y_{n}-2n=-1
Tangohia te 2n mai i ngā taha e rua.
2y_{n}n-2n=-1-y_{n}
Tangohia te y_{n} mai i ngā taha e rua.
\left(2y_{n}-2\right)n=-1-y_{n}
Pahekotia ngā kīanga tau katoa e whai ana i te n.
\left(2y_{n}-2\right)n=-y_{n}-1
He hanga arowhānui tō te whārite.
\frac{\left(2y_{n}-2\right)n}{2y_{n}-2}=\frac{-y_{n}-1}{2y_{n}-2}
Whakawehea ngā taha e rua ki te 2y_{n}-2.
n=\frac{-y_{n}-1}{2y_{n}-2}
Mā te whakawehe ki te 2y_{n}-2 ka wetekia te whakareanga ki te 2y_{n}-2.
n=-\frac{y_{n}+1}{2\left(y_{n}-1\right)}
Whakawehe -1-y_{n} ki te 2y_{n}-2.
n=-\frac{y_{n}+1}{2\left(y_{n}-1\right)}\text{, }n\neq -\frac{1}{2}
Tē taea kia ōrite te tāupe n ki -\frac{1}{2}.