Whakaoti mō y_0
y_{0} = -\frac{61}{16} = -3\frac{13}{16} = -3.8125
Tautapa y_0
y_{0}≔-\frac{61}{16}
Tohaina
Kua tāruatia ki te papatopenga
y_{0}=-\frac{32}{16}-\frac{25}{16}-\frac{25}{4}+6
Me tahuri te -2 ki te hautau -\frac{32}{16}.
y_{0}=\frac{-32-25}{16}-\frac{25}{4}+6
Tā te mea he rite te tauraro o -\frac{32}{16} me \frac{25}{16}, me tango rāua mā te tango i ō raua taurunga.
y_{0}=-\frac{57}{16}-\frac{25}{4}+6
Tangohia te 25 i te -32, ka -57.
y_{0}=-\frac{57}{16}-\frac{100}{16}+6
Ko te maha noa iti rawa atu o 16 me 4 ko 16. Me tahuri -\frac{57}{16} me \frac{25}{4} ki te hautau me te tautūnga 16.
y_{0}=\frac{-57-100}{16}+6
Tā te mea he rite te tauraro o -\frac{57}{16} me \frac{100}{16}, me tango rāua mā te tango i ō raua taurunga.
y_{0}=-\frac{157}{16}+6
Tangohia te 100 i te -57, ka -157.
y_{0}=-\frac{157}{16}+\frac{96}{16}
Me tahuri te 6 ki te hautau \frac{96}{16}.
y_{0}=\frac{-157+96}{16}
Tā te mea he rite te tauraro o -\frac{157}{16} me \frac{96}{16}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
y_{0}=-\frac{61}{16}
Tāpirihia te -157 ki te 96, ka -61.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}