Whakaoti mō y_0
y_{0} = \frac{189}{16} = 11\frac{13}{16} = 11.8125
Tautapa y_0
y_{0}≔\frac{189}{16}
Tohaina
Kua tāruatia ki te papatopenga
y_{0}=-2-\left(-\frac{25}{16}\right)-\frac{25}{-4}+6
Ka taea te hautanga \frac{25}{-16} te tuhi anō ko -\frac{25}{16} mā te tango i te tohu tōraro.
y_{0}=-2+\frac{25}{16}-\frac{25}{-4}+6
Ko te tauaro o -\frac{25}{16} ko \frac{25}{16}.
y_{0}=-\frac{32}{16}+\frac{25}{16}-\frac{25}{-4}+6
Me tahuri te -2 ki te hautau -\frac{32}{16}.
y_{0}=\frac{-32+25}{16}-\frac{25}{-4}+6
Tā te mea he rite te tauraro o -\frac{32}{16} me \frac{25}{16}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
y_{0}=-\frac{7}{16}-\frac{25}{-4}+6
Tāpirihia te -32 ki te 25, ka -7.
y_{0}=-\frac{7}{16}-\left(-\frac{25}{4}\right)+6
Ka taea te hautanga \frac{25}{-4} te tuhi anō ko -\frac{25}{4} mā te tango i te tohu tōraro.
y_{0}=-\frac{7}{16}+\frac{25}{4}+6
Ko te tauaro o -\frac{25}{4} ko \frac{25}{4}.
y_{0}=-\frac{7}{16}+\frac{100}{16}+6
Ko te maha noa iti rawa atu o 16 me 4 ko 16. Me tahuri -\frac{7}{16} me \frac{25}{4} ki te hautau me te tautūnga 16.
y_{0}=\frac{-7+100}{16}+6
Tā te mea he rite te tauraro o -\frac{7}{16} me \frac{100}{16}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
y_{0}=\frac{93}{16}+6
Tāpirihia te -7 ki te 100, ka 93.
y_{0}=\frac{93}{16}+\frac{96}{16}
Me tahuri te 6 ki te hautau \frac{96}{16}.
y_{0}=\frac{93+96}{16}
Tā te mea he rite te tauraro o \frac{93}{16} me \frac{96}{16}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
y_{0}=\frac{189}{16}
Tāpirihia te 93 ki te 96, ka 189.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}