Whakaoti mō y, x
x=12
y=38
Graph
Tohaina
Kua tāruatia ki te papatopenga
y-3x=2,-2y+7x=8
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
y-3x=2
Kōwhiria tētahi o ngā whārite ka whakaotia mō te y mā te wehe i te y i te taha mauī o te tohu ōrite.
y=3x+2
Me tāpiri 3x ki ngā taha e rua o te whārite.
-2\left(3x+2\right)+7x=8
Whakakapia te 3x+2 mō te y ki tērā atu whārite, -2y+7x=8.
-6x-4+7x=8
Whakareatia -2 ki te 3x+2.
x-4=8
Tāpiri -6x ki te 7x.
x=12
Me tāpiri 4 ki ngā taha e rua o te whārite.
y=3\times 12+2
Whakaurua te 12 mō x ki y=3x+2. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō y hāngai tonu.
y=36+2
Whakareatia 3 ki te 12.
y=38
Tāpiri 2 ki te 36.
y=38,x=12
Kua oti te pūnaha te whakatau.
y-3x=2,-2y+7x=8
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}1&-3\\-2&7\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}2\\8\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}1&-3\\-2&7\end{matrix}\right))\left(\begin{matrix}1&-3\\-2&7\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-3\\-2&7\end{matrix}\right))\left(\begin{matrix}2\\8\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}1&-3\\-2&7\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-3\\-2&7\end{matrix}\right))\left(\begin{matrix}2\\8\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-3\\-2&7\end{matrix}\right))\left(\begin{matrix}2\\8\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{7}{7-\left(-3\left(-2\right)\right)}&-\frac{-3}{7-\left(-3\left(-2\right)\right)}\\-\frac{-2}{7-\left(-3\left(-2\right)\right)}&\frac{1}{7-\left(-3\left(-2\right)\right)}\end{matrix}\right)\left(\begin{matrix}2\\8\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}7&3\\2&1\end{matrix}\right)\left(\begin{matrix}2\\8\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}7\times 2+3\times 8\\2\times 2+8\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}38\\12\end{matrix}\right)
Mahia ngā tātaitanga.
y=38,x=12
Tangohia ngā huānga poukapa y me x.
y-3x=2,-2y+7x=8
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
-2y-2\left(-3\right)x=-2\times 2,-2y+7x=8
Kia ōrite ai a y me -2y, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te -2 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 1.
-2y+6x=-4,-2y+7x=8
Whakarūnātia.
-2y+2y+6x-7x=-4-8
Me tango -2y+7x=8 mai i -2y+6x=-4 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
6x-7x=-4-8
Tāpiri -2y ki te 2y. Ka whakakore atu ngā kupu -2y me 2y, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-x=-4-8
Tāpiri 6x ki te -7x.
-x=-12
Tāpiri -4 ki te -8.
x=12
Whakawehea ngā taha e rua ki te -1.
-2y+7\times 12=8
Whakaurua te 12 mō x ki -2y+7x=8. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō y hāngai tonu.
-2y+84=8
Whakareatia 7 ki te 12.
-2y=-76
Me tango 84 mai i ngā taha e rua o te whārite.
y=38
Whakawehea ngā taha e rua ki te -2.
y=38,x=12
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}