Whakaoti mō y
y = \frac{3}{2} = 1\frac{1}{2} = 1.5
Graph
Tohaina
Kua tāruatia ki te papatopenga
7y-3-9+12y-15=y
Pahekotia te y me 6y, ka 7y.
7y-12+12y-15=y
Tangohia te 9 i te -3, ka -12.
19y-12-15=y
Pahekotia te 7y me 12y, ka 19y.
19y-27=y
Tangohia te 15 i te -12, ka -27.
19y-27-y=0
Tangohia te y mai i ngā taha e rua.
18y-27=0
Pahekotia te 19y me -y, ka 18y.
18y=27
Me tāpiri te 27 ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
y=\frac{27}{18}
Whakawehea ngā taha e rua ki te 18.
y=\frac{3}{2}
Whakahekea te hautanga \frac{27}{18} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 9.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}