Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Whakaroha
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{y\left(3x+2\right)}{3x+2}-\frac{x^{2}+1}{3x+2}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia y ki te \frac{3x+2}{3x+2}.
\frac{y\left(3x+2\right)-\left(x^{2}+1\right)}{3x+2}
Tā te mea he rite te tauraro o \frac{y\left(3x+2\right)}{3x+2} me \frac{x^{2}+1}{3x+2}, me tango rāua mā te tango i ō raua taurunga.
\frac{3yx+2y-x^{2}-1}{3x+2}
Mahia ngā whakarea i roto o y\left(3x+2\right)-\left(x^{2}+1\right).
\frac{y\left(3x+2\right)}{3x+2}-\frac{x^{2}+1}{3x+2}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia y ki te \frac{3x+2}{3x+2}.
\frac{y\left(3x+2\right)-\left(x^{2}+1\right)}{3x+2}
Tā te mea he rite te tauraro o \frac{y\left(3x+2\right)}{3x+2} me \frac{x^{2}+1}{3x+2}, me tango rāua mā te tango i ō raua taurunga.
\frac{3yx+2y-x^{2}-1}{3x+2}
Mahia ngā whakarea i roto o y\left(3x+2\right)-\left(x^{2}+1\right).