Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Whakaoti mō y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

y\times 1.032^{x}=2y
Whakamahia ngā ture taupū me ngā taupū kōaro hei whakaoti i te whārite.
1.032^{x}=2
Whakawehea ngā taha e rua ki te y.
\log(1.032^{x})=\log(2)
Tuhia te tau taupū kōaro o ngā taha e rua o te whārite.
x\log(1.032)=\log(2)
Ko te taupū kōaro o tētahi tau ka hīkina ki tētahi pū ko te pū whakarea ki te taupū kōaro o taua tau.
x=\frac{\log(2)}{\log(1.032)}
Whakawehea ngā taha e rua ki te \log(1.032).
x=\log_{1.032}\left(2\right)
Mā te tikanga tātai huri pūtake \frac{\log(a)}{\log(b)}=\log_{b}\left(a\right).
y\times 1.032^{x}-2y=0
Tangohia te 2y mai i ngā taha e rua.
\left(1.032^{x}-2\right)y=0
Pahekotia ngā kīanga tau katoa e whai ana i te y.
y=0
Whakawehe 0 ki te 1.032^{x}-2.