Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Kimi Pārōnaki e ai ki y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

y\times 6\left(-2\right)^{4}\times 5^{3}
Me whakakore tahi te \left(-2\right)^{6}\times 5^{3}\times 6^{2} i te taurunga me te tauraro.
y\times 6\times 16\times 5^{3}
Tātaihia te -2 mā te pū o 4, kia riro ko 16.
y\times 96\times 5^{3}
Whakareatia te 6 ki te 16, ka 96.
y\times 96\times 125
Tātaihia te 5 mā te pū o 3, kia riro ko 125.
y\times 12000
Whakareatia te 96 ki te 125, ka 12000.
\frac{\mathrm{d}}{\mathrm{d}y}(y\times 6\left(-2\right)^{4}\times 5^{3})
Me whakakore tahi te \left(-2\right)^{6}\times 5^{3}\times 6^{2} i te taurunga me te tauraro.
\frac{\mathrm{d}}{\mathrm{d}y}(y\times 6\times 16\times 5^{3})
Tātaihia te -2 mā te pū o 4, kia riro ko 16.
\frac{\mathrm{d}}{\mathrm{d}y}(y\times 96\times 5^{3})
Whakareatia te 6 ki te 16, ka 96.
\frac{\mathrm{d}}{\mathrm{d}y}(y\times 96\times 125)
Tātaihia te 5 mā te pū o 3, kia riro ko 125.
\frac{\mathrm{d}}{\mathrm{d}y}(y\times 12000)
Whakareatia te 96 ki te 125, ka 12000.
12000y^{1-1}
Ko te pārōnaki o ax^{n} ko nax^{n-1}.
12000y^{0}
Tango 1 mai i 1.
12000\times 1
Mō tētahi kupu t mahue te 0, t^{0}=1.
12000
Mō tētahi kupu t, t\times 1=t me 1t=t.