Tīpoka ki ngā ihirangi matua
Whakaoti mō y (complex solution)
Tick mark Image
Whakaoti mō y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

y^{3}-27=0
Tangohia te 27 mai i ngā taha e rua.
±27,±9,±3,±1
Tā te Rational Root Theorem, ko ngā pūtake whakahau katoa o tētahi pūrau kei te āhua o \frac{p}{q}, ina wehea e p te kīanga pūmau -27, ā, ka wehea e q te whakarea arahanga 1. Whakarārangitia ngā kaitono katoa \frac{p}{q}.
y=3
Kimihia tētahi pūtake pērā mā te whakamātau i ngā uara tau tōpū katoa, e tīmata ana i te mea iti rawa mā te uara pū. Mēnā kāore he pūtake tau tōpū e kitea, whakamātauria ngā hautanga.
y^{2}+3y+9=0
Mā te whakatakotoranga Tauwehe, he tauwehe te y-k o te pūrau mō ia pūtake k. Whakawehea te y^{3}-27 ki te y-3, kia riro ko y^{2}+3y+9. Whakaotihia te whārite ina ōrite te hua ki te 0.
y=\frac{-3±\sqrt{3^{2}-4\times 1\times 9}}{2}
Ka taea ngā whārite katoa o te momo ax^{2}+bx+c=0 te whakaoti mā te ture pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Whakakapia te 1 mō te a, te 3 mō te b, me te 9 mō te c i te ture pūrua.
y=\frac{-3±\sqrt{-27}}{2}
Mahia ngā tātaitai.
y=\frac{-3i\sqrt{3}-3}{2} y=\frac{-3+3i\sqrt{3}}{2}
Whakaotia te whārite y^{2}+3y+9=0 ina he tōrunga te ±, ina he tōraro te ±.
y=3 y=\frac{-3i\sqrt{3}-3}{2} y=\frac{-3+3i\sqrt{3}}{2}
Rārangitia ngā otinga katoa i kitea.
y^{3}-27=0
Tangohia te 27 mai i ngā taha e rua.
±27,±9,±3,±1
Tā te Rational Root Theorem, ko ngā pūtake whakahau katoa o tētahi pūrau kei te āhua o \frac{p}{q}, ina wehea e p te kīanga pūmau -27, ā, ka wehea e q te whakarea arahanga 1. Whakarārangitia ngā kaitono katoa \frac{p}{q}.
y=3
Kimihia tētahi pūtake pērā mā te whakamātau i ngā uara tau tōpū katoa, e tīmata ana i te mea iti rawa mā te uara pū. Mēnā kāore he pūtake tau tōpū e kitea, whakamātauria ngā hautanga.
y^{2}+3y+9=0
Mā te whakatakotoranga Tauwehe, he tauwehe te y-k o te pūrau mō ia pūtake k. Whakawehea te y^{3}-27 ki te y-3, kia riro ko y^{2}+3y+9. Whakaotihia te whārite ina ōrite te hua ki te 0.
y=\frac{-3±\sqrt{3^{2}-4\times 1\times 9}}{2}
Ka taea ngā whārite katoa o te momo ax^{2}+bx+c=0 te whakaoti mā te ture pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Whakakapia te 1 mō te a, te 3 mō te b, me te 9 mō te c i te ture pūrua.
y=\frac{-3±\sqrt{-27}}{2}
Mahia ngā tātaitai.
y\in \emptyset
Tā te mea e kore te pūrua o tētahi tau tōraro e tautohutia ki te āpure tūturu, kāhore he rongoā.
y=3
Rārangitia ngā otinga katoa i kitea.