Whakaoti mō y
y=2
y=6
Graph
Tohaina
Kua tāruatia ki te papatopenga
a+b=-8 ab=12
Hei whakaoti i te whārite, whakatauwehea te y^{2}-8y+12 mā te whakamahi i te tātai y^{2}+\left(a+b\right)y+ab=\left(y+a\right)\left(y+b\right). Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,-12 -2,-6 -3,-4
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōraro te a+b, he tōraro hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 12.
-1-12=-13 -2-6=-8 -3-4=-7
Tātaihia te tapeke mō ia takirua.
a=-6 b=-2
Ko te otinga te takirua ka hoatu i te tapeke -8.
\left(y-6\right)\left(y-2\right)
Me tuhi anō te kīanga whakatauwehe \left(y+a\right)\left(y+b\right) mā ngā uara i tātaihia.
y=6 y=2
Hei kimi otinga whārite, me whakaoti te y-6=0 me te y-2=0.
a+b=-8 ab=1\times 12=12
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei y^{2}+ay+by+12. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,-12 -2,-6 -3,-4
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōraro te a+b, he tōraro hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 12.
-1-12=-13 -2-6=-8 -3-4=-7
Tātaihia te tapeke mō ia takirua.
a=-6 b=-2
Ko te otinga te takirua ka hoatu i te tapeke -8.
\left(y^{2}-6y\right)+\left(-2y+12\right)
Tuhia anō te y^{2}-8y+12 hei \left(y^{2}-6y\right)+\left(-2y+12\right).
y\left(y-6\right)-2\left(y-6\right)
Tauwehea te y i te tuatahi me te -2 i te rōpū tuarua.
\left(y-6\right)\left(y-2\right)
Whakatauwehea atu te kīanga pātahi y-6 mā te whakamahi i te āhuatanga tātai tohatoha.
y=6 y=2
Hei kimi otinga whārite, me whakaoti te y-6=0 me te y-2=0.
y^{2}-8y+12=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
y=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\times 12}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, -8 mō b, me 12 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-\left(-8\right)±\sqrt{64-4\times 12}}{2}
Pūrua -8.
y=\frac{-\left(-8\right)±\sqrt{64-48}}{2}
Whakareatia -4 ki te 12.
y=\frac{-\left(-8\right)±\sqrt{16}}{2}
Tāpiri 64 ki te -48.
y=\frac{-\left(-8\right)±4}{2}
Tuhia te pūtakerua o te 16.
y=\frac{8±4}{2}
Ko te tauaro o -8 ko 8.
y=\frac{12}{2}
Nā, me whakaoti te whārite y=\frac{8±4}{2} ina he tāpiri te ±. Tāpiri 8 ki te 4.
y=6
Whakawehe 12 ki te 2.
y=\frac{4}{2}
Nā, me whakaoti te whārite y=\frac{8±4}{2} ina he tango te ±. Tango 4 mai i 8.
y=2
Whakawehe 4 ki te 2.
y=6 y=2
Kua oti te whārite te whakatau.
y^{2}-8y+12=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
y^{2}-8y+12-12=-12
Me tango 12 mai i ngā taha e rua o te whārite.
y^{2}-8y=-12
Mā te tango i te 12 i a ia ake anō ka toe ko te 0.
y^{2}-8y+\left(-4\right)^{2}=-12+\left(-4\right)^{2}
Whakawehea te -8, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -4. Nā, tāpiria te pūrua o te -4 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
y^{2}-8y+16=-12+16
Pūrua -4.
y^{2}-8y+16=4
Tāpiri -12 ki te 16.
\left(y-4\right)^{2}=4
Tauwehea y^{2}-8y+16. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(y-4\right)^{2}}=\sqrt{4}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
y-4=2 y-4=-2
Whakarūnātia.
y=6 y=2
Me tāpiri 4 ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}