Whakaoti mō y
y=1
y=6
Graph
Tohaina
Kua tāruatia ki te papatopenga
a+b=-7 ab=6
Hei whakaoti i te whārite, whakatauwehea te y^{2}-7y+6 mā te whakamahi i te tātai y^{2}+\left(a+b\right)y+ab=\left(y+a\right)\left(y+b\right). Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,-6 -2,-3
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōraro te a+b, he tōraro hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 6.
-1-6=-7 -2-3=-5
Tātaihia te tapeke mō ia takirua.
a=-6 b=-1
Ko te otinga te takirua ka hoatu i te tapeke -7.
\left(y-6\right)\left(y-1\right)
Me tuhi anō te kīanga whakatauwehe \left(y+a\right)\left(y+b\right) mā ngā uara i tātaihia.
y=6 y=1
Hei kimi otinga whārite, me whakaoti te y-6=0 me te y-1=0.
a+b=-7 ab=1\times 6=6
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei y^{2}+ay+by+6. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,-6 -2,-3
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōraro te a+b, he tōraro hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 6.
-1-6=-7 -2-3=-5
Tātaihia te tapeke mō ia takirua.
a=-6 b=-1
Ko te otinga te takirua ka hoatu i te tapeke -7.
\left(y^{2}-6y\right)+\left(-y+6\right)
Tuhia anō te y^{2}-7y+6 hei \left(y^{2}-6y\right)+\left(-y+6\right).
y\left(y-6\right)-\left(y-6\right)
Tauwehea te y i te tuatahi me te -1 i te rōpū tuarua.
\left(y-6\right)\left(y-1\right)
Whakatauwehea atu te kīanga pātahi y-6 mā te whakamahi i te āhuatanga tātai tohatoha.
y=6 y=1
Hei kimi otinga whārite, me whakaoti te y-6=0 me te y-1=0.
y^{2}-7y+6=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
y=\frac{-\left(-7\right)±\sqrt{\left(-7\right)^{2}-4\times 6}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, -7 mō b, me 6 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-\left(-7\right)±\sqrt{49-4\times 6}}{2}
Pūrua -7.
y=\frac{-\left(-7\right)±\sqrt{49-24}}{2}
Whakareatia -4 ki te 6.
y=\frac{-\left(-7\right)±\sqrt{25}}{2}
Tāpiri 49 ki te -24.
y=\frac{-\left(-7\right)±5}{2}
Tuhia te pūtakerua o te 25.
y=\frac{7±5}{2}
Ko te tauaro o -7 ko 7.
y=\frac{12}{2}
Nā, me whakaoti te whārite y=\frac{7±5}{2} ina he tāpiri te ±. Tāpiri 7 ki te 5.
y=6
Whakawehe 12 ki te 2.
y=\frac{2}{2}
Nā, me whakaoti te whārite y=\frac{7±5}{2} ina he tango te ±. Tango 5 mai i 7.
y=1
Whakawehe 2 ki te 2.
y=6 y=1
Kua oti te whārite te whakatau.
y^{2}-7y+6=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
y^{2}-7y+6-6=-6
Me tango 6 mai i ngā taha e rua o te whārite.
y^{2}-7y=-6
Mā te tango i te 6 i a ia ake anō ka toe ko te 0.
y^{2}-7y+\left(-\frac{7}{2}\right)^{2}=-6+\left(-\frac{7}{2}\right)^{2}
Whakawehea te -7, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{7}{2}. Nā, tāpiria te pūrua o te -\frac{7}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
y^{2}-7y+\frac{49}{4}=-6+\frac{49}{4}
Pūruatia -\frac{7}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
y^{2}-7y+\frac{49}{4}=\frac{25}{4}
Tāpiri -6 ki te \frac{49}{4}.
\left(y-\frac{7}{2}\right)^{2}=\frac{25}{4}
Tauwehea y^{2}-7y+\frac{49}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(y-\frac{7}{2}\right)^{2}}=\sqrt{\frac{25}{4}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
y-\frac{7}{2}=\frac{5}{2} y-\frac{7}{2}=-\frac{5}{2}
Whakarūnātia.
y=6 y=1
Me tāpiri \frac{7}{2} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}