Whakaoti mō y
y=\sqrt{10}+2\approx 5.16227766
y=2-\sqrt{10}\approx -1.16227766
Graph
Tohaina
Kua tāruatia ki te papatopenga
y^{2}-4y=6
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
y^{2}-4y-6=6-6
Me tango 6 mai i ngā taha e rua o te whārite.
y^{2}-4y-6=0
Mā te tango i te 6 i a ia ake anō ka toe ko te 0.
y=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\left(-6\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, -4 mō b, me -6 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-\left(-4\right)±\sqrt{16-4\left(-6\right)}}{2}
Pūrua -4.
y=\frac{-\left(-4\right)±\sqrt{16+24}}{2}
Whakareatia -4 ki te -6.
y=\frac{-\left(-4\right)±\sqrt{40}}{2}
Tāpiri 16 ki te 24.
y=\frac{-\left(-4\right)±2\sqrt{10}}{2}
Tuhia te pūtakerua o te 40.
y=\frac{4±2\sqrt{10}}{2}
Ko te tauaro o -4 ko 4.
y=\frac{2\sqrt{10}+4}{2}
Nā, me whakaoti te whārite y=\frac{4±2\sqrt{10}}{2} ina he tāpiri te ±. Tāpiri 4 ki te 2\sqrt{10}.
y=\sqrt{10}+2
Whakawehe 4+2\sqrt{10} ki te 2.
y=\frac{4-2\sqrt{10}}{2}
Nā, me whakaoti te whārite y=\frac{4±2\sqrt{10}}{2} ina he tango te ±. Tango 2\sqrt{10} mai i 4.
y=2-\sqrt{10}
Whakawehe 4-2\sqrt{10} ki te 2.
y=\sqrt{10}+2 y=2-\sqrt{10}
Kua oti te whārite te whakatau.
y^{2}-4y=6
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
y^{2}-4y+\left(-2\right)^{2}=6+\left(-2\right)^{2}
Whakawehea te -4, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -2. Nā, tāpiria te pūrua o te -2 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
y^{2}-4y+4=6+4
Pūrua -2.
y^{2}-4y+4=10
Tāpiri 6 ki te 4.
\left(y-2\right)^{2}=10
Tauwehea y^{2}-4y+4. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(y-2\right)^{2}}=\sqrt{10}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
y-2=\sqrt{10} y-2=-\sqrt{10}
Whakarūnātia.
y=\sqrt{10}+2 y=2-\sqrt{10}
Me tāpiri 2 ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}