Whakaoti mō y
y=-4
y=9
Graph
Tohaina
Kua tāruatia ki te papatopenga
y^{2}-36-5y=0
Tangohia te 5y mai i ngā taha e rua.
y^{2}-5y-36=0
Hurinahatia te pūrau ki te āhua tānga ngahuru. Whakaraupapahia ngā kīanga tau mai i te pū teitei rawa ki te mea iti rawa.
a+b=-5 ab=-36
Hei whakaoti i te whārite, whakatauwehea te y^{2}-5y-36 mā te whakamahi i te tātai y^{2}+\left(a+b\right)y+ab=\left(y+a\right)\left(y+b\right). Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,-36 2,-18 3,-12 4,-9 6,-6
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōraro te a+b, he nui ake te uara pū o te tau tōraro i tō te tōrunga. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -36.
1-36=-35 2-18=-16 3-12=-9 4-9=-5 6-6=0
Tātaihia te tapeke mō ia takirua.
a=-9 b=4
Ko te otinga te takirua ka hoatu i te tapeke -5.
\left(y-9\right)\left(y+4\right)
Me tuhi anō te kīanga whakatauwehe \left(y+a\right)\left(y+b\right) mā ngā uara i tātaihia.
y=9 y=-4
Hei kimi otinga whārite, me whakaoti te y-9=0 me te y+4=0.
y^{2}-36-5y=0
Tangohia te 5y mai i ngā taha e rua.
y^{2}-5y-36=0
Hurinahatia te pūrau ki te āhua tānga ngahuru. Whakaraupapahia ngā kīanga tau mai i te pū teitei rawa ki te mea iti rawa.
a+b=-5 ab=1\left(-36\right)=-36
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei y^{2}+ay+by-36. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,-36 2,-18 3,-12 4,-9 6,-6
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōraro te a+b, he nui ake te uara pū o te tau tōraro i tō te tōrunga. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -36.
1-36=-35 2-18=-16 3-12=-9 4-9=-5 6-6=0
Tātaihia te tapeke mō ia takirua.
a=-9 b=4
Ko te otinga te takirua ka hoatu i te tapeke -5.
\left(y^{2}-9y\right)+\left(4y-36\right)
Tuhia anō te y^{2}-5y-36 hei \left(y^{2}-9y\right)+\left(4y-36\right).
y\left(y-9\right)+4\left(y-9\right)
Tauwehea te y i te tuatahi me te 4 i te rōpū tuarua.
\left(y-9\right)\left(y+4\right)
Whakatauwehea atu te kīanga pātahi y-9 mā te whakamahi i te āhuatanga tātai tohatoha.
y=9 y=-4
Hei kimi otinga whārite, me whakaoti te y-9=0 me te y+4=0.
y^{2}-36-5y=0
Tangohia te 5y mai i ngā taha e rua.
y^{2}-5y-36=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
y=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\left(-36\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, -5 mō b, me -36 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-\left(-5\right)±\sqrt{25-4\left(-36\right)}}{2}
Pūrua -5.
y=\frac{-\left(-5\right)±\sqrt{25+144}}{2}
Whakareatia -4 ki te -36.
y=\frac{-\left(-5\right)±\sqrt{169}}{2}
Tāpiri 25 ki te 144.
y=\frac{-\left(-5\right)±13}{2}
Tuhia te pūtakerua o te 169.
y=\frac{5±13}{2}
Ko te tauaro o -5 ko 5.
y=\frac{18}{2}
Nā, me whakaoti te whārite y=\frac{5±13}{2} ina he tāpiri te ±. Tāpiri 5 ki te 13.
y=9
Whakawehe 18 ki te 2.
y=-\frac{8}{2}
Nā, me whakaoti te whārite y=\frac{5±13}{2} ina he tango te ±. Tango 13 mai i 5.
y=-4
Whakawehe -8 ki te 2.
y=9 y=-4
Kua oti te whārite te whakatau.
y^{2}-36-5y=0
Tangohia te 5y mai i ngā taha e rua.
y^{2}-5y=36
Me tāpiri te 36 ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
y^{2}-5y+\left(-\frac{5}{2}\right)^{2}=36+\left(-\frac{5}{2}\right)^{2}
Whakawehea te -5, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{5}{2}. Nā, tāpiria te pūrua o te -\frac{5}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
y^{2}-5y+\frac{25}{4}=36+\frac{25}{4}
Pūruatia -\frac{5}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
y^{2}-5y+\frac{25}{4}=\frac{169}{4}
Tāpiri 36 ki te \frac{25}{4}.
\left(y-\frac{5}{2}\right)^{2}=\frac{169}{4}
Tauwehea y^{2}-5y+\frac{25}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(y-\frac{5}{2}\right)^{2}}=\sqrt{\frac{169}{4}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
y-\frac{5}{2}=\frac{13}{2} y-\frac{5}{2}=-\frac{13}{2}
Whakarūnātia.
y=9 y=-4
Me tāpiri \frac{5}{2} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}