Tīpoka ki ngā ihirangi matua
Whakaoti mō y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

y^{2}-3y=9
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
y^{2}-3y-9=9-9
Me tango 9 mai i ngā taha e rua o te whārite.
y^{2}-3y-9=0
Mā te tango i te 9 i a ia ake anō ka toe ko te 0.
y=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\left(-9\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, -3 mō b, me -9 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-\left(-3\right)±\sqrt{9-4\left(-9\right)}}{2}
Pūrua -3.
y=\frac{-\left(-3\right)±\sqrt{9+36}}{2}
Whakareatia -4 ki te -9.
y=\frac{-\left(-3\right)±\sqrt{45}}{2}
Tāpiri 9 ki te 36.
y=\frac{-\left(-3\right)±3\sqrt{5}}{2}
Tuhia te pūtakerua o te 45.
y=\frac{3±3\sqrt{5}}{2}
Ko te tauaro o -3 ko 3.
y=\frac{3\sqrt{5}+3}{2}
Nā, me whakaoti te whārite y=\frac{3±3\sqrt{5}}{2} ina he tāpiri te ±. Tāpiri 3 ki te 3\sqrt{5}.
y=\frac{3-3\sqrt{5}}{2}
Nā, me whakaoti te whārite y=\frac{3±3\sqrt{5}}{2} ina he tango te ±. Tango 3\sqrt{5} mai i 3.
y=\frac{3\sqrt{5}+3}{2} y=\frac{3-3\sqrt{5}}{2}
Kua oti te whārite te whakatau.
y^{2}-3y=9
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
y^{2}-3y+\left(-\frac{3}{2}\right)^{2}=9+\left(-\frac{3}{2}\right)^{2}
Whakawehea te -3, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{3}{2}. Nā, tāpiria te pūrua o te -\frac{3}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
y^{2}-3y+\frac{9}{4}=9+\frac{9}{4}
Pūruatia -\frac{3}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
y^{2}-3y+\frac{9}{4}=\frac{45}{4}
Tāpiri 9 ki te \frac{9}{4}.
\left(y-\frac{3}{2}\right)^{2}=\frac{45}{4}
Tauwehea y^{2}-3y+\frac{9}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(y-\frac{3}{2}\right)^{2}}=\sqrt{\frac{45}{4}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
y-\frac{3}{2}=\frac{3\sqrt{5}}{2} y-\frac{3}{2}=-\frac{3\sqrt{5}}{2}
Whakarūnātia.
y=\frac{3\sqrt{5}+3}{2} y=\frac{3-3\sqrt{5}}{2}
Me tāpiri \frac{3}{2} ki ngā taha e rua o te whārite.