Whakaoti mō d
d=\frac{y^{2}-1}{2}
Whakaoti mō y (complex solution)
y=-\sqrt{2d+1}
y=\sqrt{2d+1}
Whakaoti mō y
y=\sqrt{2d+1}
y=-\sqrt{2d+1}\text{, }d\geq -\frac{1}{2}
Graph
Tohaina
Kua tāruatia ki te papatopenga
-2d-1=-y^{2}
Tangohia te y^{2} mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
-2d=-y^{2}+1
Me tāpiri te 1 ki ngā taha e rua.
-2d=1-y^{2}
He hanga arowhānui tō te whārite.
\frac{-2d}{-2}=\frac{1-y^{2}}{-2}
Whakawehea ngā taha e rua ki te -2.
d=\frac{1-y^{2}}{-2}
Mā te whakawehe ki te -2 ka wetekia te whakareanga ki te -2.
d=\frac{y^{2}-1}{2}
Whakawehe -y^{2}+1 ki te -2.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}