Tīpoka ki ngā ihirangi matua
Whakaoti mō y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

y^{2}=52-0\times 8
Whakareatia te 48 ki te 0, ka 0.
y^{2}=52-0
Whakareatia te 0 ki te 8, ka 0.
y^{2}=52
Tangohia te 0 i te 52, ka 52.
y=2\sqrt{13} y=-2\sqrt{13}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
y^{2}=52-0\times 8
Whakareatia te 48 ki te 0, ka 0.
y^{2}=52-0
Whakareatia te 0 ki te 8, ka 0.
y^{2}=52
Tangohia te 0 i te 52, ka 52.
y^{2}-52=0
Tangohia te 52 mai i ngā taha e rua.
y=\frac{0±\sqrt{0^{2}-4\left(-52\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 0 mō b, me -52 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{0±\sqrt{-4\left(-52\right)}}{2}
Pūrua 0.
y=\frac{0±\sqrt{208}}{2}
Whakareatia -4 ki te -52.
y=\frac{0±4\sqrt{13}}{2}
Tuhia te pūtakerua o te 208.
y=2\sqrt{13}
Nā, me whakaoti te whārite y=\frac{0±4\sqrt{13}}{2} ina he tāpiri te ±.
y=-2\sqrt{13}
Nā, me whakaoti te whārite y=\frac{0±4\sqrt{13}}{2} ina he tango te ±.
y=2\sqrt{13} y=-2\sqrt{13}
Kua oti te whārite te whakatau.