Whakaoti mō y
y = \frac{2 \sqrt{565}}{5} \approx 9.507891459
y = -\frac{2 \sqrt{565}}{5} \approx -9.507891459
Graph
Tohaina
Kua tāruatia ki te papatopenga
y^{2}=52-\left(-38.4\right)
Whakareatia te 48 ki te -0.8, ka -38.4.
y^{2}=52+38.4
Ko te tauaro o -38.4 ko 38.4.
y^{2}=90.4
Tāpirihia te 52 ki te 38.4, ka 90.4.
y=\frac{2\sqrt{565}}{5} y=-\frac{2\sqrt{565}}{5}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
y^{2}=52-\left(-38.4\right)
Whakareatia te 48 ki te -0.8, ka -38.4.
y^{2}=52+38.4
Ko te tauaro o -38.4 ko 38.4.
y^{2}=90.4
Tāpirihia te 52 ki te 38.4, ka 90.4.
y^{2}-90.4=0
Tangohia te 90.4 mai i ngā taha e rua.
y=\frac{0±\sqrt{0^{2}-4\left(-90.4\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 0 mō b, me -90.4 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{0±\sqrt{-4\left(-90.4\right)}}{2}
Pūrua 0.
y=\frac{0±\sqrt{361.6}}{2}
Whakareatia -4 ki te -90.4.
y=\frac{0±\frac{4\sqrt{565}}{5}}{2}
Tuhia te pūtakerua o te 361.6.
y=\frac{2\sqrt{565}}{5}
Nā, me whakaoti te whārite y=\frac{0±\frac{4\sqrt{565}}{5}}{2} ina he tāpiri te ±.
y=-\frac{2\sqrt{565}}{5}
Nā, me whakaoti te whārite y=\frac{0±\frac{4\sqrt{565}}{5}}{2} ina he tango te ±.
y=\frac{2\sqrt{565}}{5} y=-\frac{2\sqrt{565}}{5}
Kua oti te whārite te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}