Tīpoka ki ngā ihirangi matua
Whakaoti mō y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

y^{2}=52-\left(-38.4\right)
Whakareatia te 48 ki te -0.8, ka -38.4.
y^{2}=52+38.4
Ko te tauaro o -38.4 ko 38.4.
y^{2}=90.4
Tāpirihia te 52 ki te 38.4, ka 90.4.
y=\frac{2\sqrt{565}}{5} y=-\frac{2\sqrt{565}}{5}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
y^{2}=52-\left(-38.4\right)
Whakareatia te 48 ki te -0.8, ka -38.4.
y^{2}=52+38.4
Ko te tauaro o -38.4 ko 38.4.
y^{2}=90.4
Tāpirihia te 52 ki te 38.4, ka 90.4.
y^{2}-90.4=0
Tangohia te 90.4 mai i ngā taha e rua.
y=\frac{0±\sqrt{0^{2}-4\left(-90.4\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 0 mō b, me -90.4 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{0±\sqrt{-4\left(-90.4\right)}}{2}
Pūrua 0.
y=\frac{0±\sqrt{361.6}}{2}
Whakareatia -4 ki te -90.4.
y=\frac{0±\frac{4\sqrt{565}}{5}}{2}
Tuhia te pūtakerua o te 361.6.
y=\frac{2\sqrt{565}}{5}
Nā, me whakaoti te whārite y=\frac{0±\frac{4\sqrt{565}}{5}}{2} ina he tāpiri te ±.
y=-\frac{2\sqrt{565}}{5}
Nā, me whakaoti te whārite y=\frac{0±\frac{4\sqrt{565}}{5}}{2} ina he tango te ±.
y=\frac{2\sqrt{565}}{5} y=-\frac{2\sqrt{565}}{5}
Kua oti te whārite te whakatau.