Tīpoka ki ngā ihirangi matua
Whakaoti mō y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

y^{2}-18y=0
Tangohia te 18y mai i ngā taha e rua.
y\left(y-18\right)=0
Tauwehea te y.
y=0 y=18
Hei kimi otinga whārite, me whakaoti te y=0 me te y-18=0.
y^{2}-18y=0
Tangohia te 18y mai i ngā taha e rua.
y=\frac{-\left(-18\right)±\sqrt{\left(-18\right)^{2}}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, -18 mō b, me 0 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-\left(-18\right)±18}{2}
Tuhia te pūtakerua o te \left(-18\right)^{2}.
y=\frac{18±18}{2}
Ko te tauaro o -18 ko 18.
y=\frac{36}{2}
Nā, me whakaoti te whārite y=\frac{18±18}{2} ina he tāpiri te ±. Tāpiri 18 ki te 18.
y=18
Whakawehe 36 ki te 2.
y=\frac{0}{2}
Nā, me whakaoti te whārite y=\frac{18±18}{2} ina he tango te ±. Tango 18 mai i 18.
y=0
Whakawehe 0 ki te 2.
y=18 y=0
Kua oti te whārite te whakatau.
y^{2}-18y=0
Tangohia te 18y mai i ngā taha e rua.
y^{2}-18y+\left(-9\right)^{2}=\left(-9\right)^{2}
Whakawehea te -18, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -9. Nā, tāpiria te pūrua o te -9 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
y^{2}-18y+81=81
Pūrua -9.
\left(y-9\right)^{2}=81
Tauwehea y^{2}-18y+81. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(y-9\right)^{2}}=\sqrt{81}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
y-9=9 y-9=-9
Whakarūnātia.
y=18 y=0
Me tāpiri 9 ki ngā taha e rua o te whārite.