Tīpoka ki ngā ihirangi matua
Whakaoti mō y
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

y=\sqrt{3}i y=-\sqrt{3}i
Kua oti te whārite te whakatau.
y^{2}+3=0
Me tāpiri te 3 ki ngā taha e rua.
y=\frac{0±\sqrt{0^{2}-4\times 3}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 0 mō b, me 3 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{0±\sqrt{-4\times 3}}{2}
Pūrua 0.
y=\frac{0±\sqrt{-12}}{2}
Whakareatia -4 ki te 3.
y=\frac{0±2\sqrt{3}i}{2}
Tuhia te pūtakerua o te -12.
y=\sqrt{3}i
Nā, me whakaoti te whārite y=\frac{0±2\sqrt{3}i}{2} ina he tāpiri te ±.
y=-\sqrt{3}i
Nā, me whakaoti te whārite y=\frac{0±2\sqrt{3}i}{2} ina he tango te ±.
y=\sqrt{3}i y=-\sqrt{3}i
Kua oti te whārite te whakatau.