Whakaoti mō x
x=\frac{3y^{2}}{2}+1
Whakaoti mō y (complex solution)
y=-\frac{\sqrt{6\left(x-1\right)}}{3}
y=\frac{\sqrt{6\left(x-1\right)}}{3}
Whakaoti mō y
y=\frac{\sqrt{6\left(x-1\right)}}{3}
y=-\frac{\sqrt{6\left(x-1\right)}}{3}\text{, }x\geq 1
Graph
Tohaina
Kua tāruatia ki te papatopenga
y^{2}=\frac{2}{3}x-\frac{2}{3}
Whakamahia te āhuatanga tohatoha hei whakarea te \frac{2}{3} ki te x-1.
\frac{2}{3}x-\frac{2}{3}=y^{2}
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
\frac{2}{3}x=y^{2}+\frac{2}{3}
Me tāpiri te \frac{2}{3} ki ngā taha e rua.
\frac{\frac{2}{3}x}{\frac{2}{3}}=\frac{y^{2}+\frac{2}{3}}{\frac{2}{3}}
Whakawehea ngā taha e rua o te whārite ki te \frac{2}{3}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=\frac{y^{2}+\frac{2}{3}}{\frac{2}{3}}
Mā te whakawehe ki te \frac{2}{3} ka wetekia te whakareanga ki te \frac{2}{3}.
x=\frac{3y^{2}}{2}+1
Whakawehe y^{2}+\frac{2}{3} ki te \frac{2}{3} mā te whakarea y^{2}+\frac{2}{3} ki te tau huripoki o \frac{2}{3}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}