Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Whakaoti mō y (complex solution)
Tick mark Image
Whakaoti mō y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

y^{2}=\frac{2}{3}x-\frac{2}{3}
Whakamahia te āhuatanga tohatoha hei whakarea te \frac{2}{3} ki te x-1.
\frac{2}{3}x-\frac{2}{3}=y^{2}
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
\frac{2}{3}x=y^{2}+\frac{2}{3}
Me tāpiri te \frac{2}{3} ki ngā taha e rua.
\frac{\frac{2}{3}x}{\frac{2}{3}}=\frac{y^{2}+\frac{2}{3}}{\frac{2}{3}}
Whakawehea ngā taha e rua o te whārite ki te \frac{2}{3}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=\frac{y^{2}+\frac{2}{3}}{\frac{2}{3}}
Mā te whakawehe ki te \frac{2}{3} ka wetekia te whakareanga ki te \frac{2}{3}.
x=\frac{3y^{2}}{2}+1
Whakawehe y^{2}+\frac{2}{3} ki te \frac{2}{3} mā te whakarea y^{2}+\frac{2}{3} ki te tau huripoki o \frac{2}{3}.