Tīpoka ki ngā ihirangi matua
Tauwehe
Tick mark Image
Aromātai
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

a+b=8 ab=1\times 12=12
Whakatauwehea te kīanga mā te whakarōpū. Tuatahi, me tuhi anō te kīanga hei y^{2}+ay+by+12. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,12 2,6 3,4
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōrunga te a+b, he tōrunga hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 12.
1+12=13 2+6=8 3+4=7
Tātaihia te tapeke mō ia takirua.
a=2 b=6
Ko te otinga te takirua ka hoatu i te tapeke 8.
\left(y^{2}+2y\right)+\left(6y+12\right)
Tuhia anō te y^{2}+8y+12 hei \left(y^{2}+2y\right)+\left(6y+12\right).
y\left(y+2\right)+6\left(y+2\right)
Tauwehea te y i te tuatahi me te 6 i te rōpū tuarua.
\left(y+2\right)\left(y+6\right)
Whakatauwehea atu te kīanga pātahi y+2 mā te whakamahi i te āhuatanga tātai tohatoha.
y^{2}+8y+12=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
y=\frac{-8±\sqrt{8^{2}-4\times 12}}{2}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
y=\frac{-8±\sqrt{64-4\times 12}}{2}
Pūrua 8.
y=\frac{-8±\sqrt{64-48}}{2}
Whakareatia -4 ki te 12.
y=\frac{-8±\sqrt{16}}{2}
Tāpiri 64 ki te -48.
y=\frac{-8±4}{2}
Tuhia te pūtakerua o te 16.
y=-\frac{4}{2}
Nā, me whakaoti te whārite y=\frac{-8±4}{2} ina he tāpiri te ±. Tāpiri -8 ki te 4.
y=-2
Whakawehe -4 ki te 2.
y=-\frac{12}{2}
Nā, me whakaoti te whārite y=\frac{-8±4}{2} ina he tango te ±. Tango 4 mai i -8.
y=-6
Whakawehe -12 ki te 2.
y^{2}+8y+12=\left(y-\left(-2\right)\right)\left(y-\left(-6\right)\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te -2 mō te x_{1} me te -6 mō te x_{2}.
y^{2}+8y+12=\left(y+2\right)\left(y+6\right)
Whakamāmātia ngā kīanga katoa o te āhua p-\left(-q\right) ki te p+q.