Whakaoti mō y
y = \frac{5 \sqrt{101} - 5}{2} \approx 22.624689053
y=\frac{-5\sqrt{101}-5}{2}\approx -27.624689053
Graph
Tohaina
Kua tāruatia ki te papatopenga
y^{2}+5y=625
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
y^{2}+5y-625=625-625
Me tango 625 mai i ngā taha e rua o te whārite.
y^{2}+5y-625=0
Mā te tango i te 625 i a ia ake anō ka toe ko te 0.
y=\frac{-5±\sqrt{5^{2}-4\left(-625\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 5 mō b, me -625 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-5±\sqrt{25-4\left(-625\right)}}{2}
Pūrua 5.
y=\frac{-5±\sqrt{25+2500}}{2}
Whakareatia -4 ki te -625.
y=\frac{-5±\sqrt{2525}}{2}
Tāpiri 25 ki te 2500.
y=\frac{-5±5\sqrt{101}}{2}
Tuhia te pūtakerua o te 2525.
y=\frac{5\sqrt{101}-5}{2}
Nā, me whakaoti te whārite y=\frac{-5±5\sqrt{101}}{2} ina he tāpiri te ±. Tāpiri -5 ki te 5\sqrt{101}.
y=\frac{-5\sqrt{101}-5}{2}
Nā, me whakaoti te whārite y=\frac{-5±5\sqrt{101}}{2} ina he tango te ±. Tango 5\sqrt{101} mai i -5.
y=\frac{5\sqrt{101}-5}{2} y=\frac{-5\sqrt{101}-5}{2}
Kua oti te whārite te whakatau.
y^{2}+5y=625
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
y^{2}+5y+\left(\frac{5}{2}\right)^{2}=625+\left(\frac{5}{2}\right)^{2}
Whakawehea te 5, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{5}{2}. Nā, tāpiria te pūrua o te \frac{5}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
y^{2}+5y+\frac{25}{4}=625+\frac{25}{4}
Pūruatia \frac{5}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
y^{2}+5y+\frac{25}{4}=\frac{2525}{4}
Tāpiri 625 ki te \frac{25}{4}.
\left(y+\frac{5}{2}\right)^{2}=\frac{2525}{4}
Tauwehea y^{2}+5y+\frac{25}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(y+\frac{5}{2}\right)^{2}}=\sqrt{\frac{2525}{4}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
y+\frac{5}{2}=\frac{5\sqrt{101}}{2} y+\frac{5}{2}=-\frac{5\sqrt{101}}{2}
Whakarūnātia.
y=\frac{5\sqrt{101}-5}{2} y=\frac{-5\sqrt{101}-5}{2}
Me tango \frac{5}{2} mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}