Tīpoka ki ngā ihirangi matua
Whakaoti mō y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

y^{2}+12y-12=0
Pahekotia te 4y me 8y, ka 12y.
y=\frac{-12±\sqrt{12^{2}-4\left(-12\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 12 mō b, me -12 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-12±\sqrt{144-4\left(-12\right)}}{2}
Pūrua 12.
y=\frac{-12±\sqrt{144+48}}{2}
Whakareatia -4 ki te -12.
y=\frac{-12±\sqrt{192}}{2}
Tāpiri 144 ki te 48.
y=\frac{-12±8\sqrt{3}}{2}
Tuhia te pūtakerua o te 192.
y=\frac{8\sqrt{3}-12}{2}
Nā, me whakaoti te whārite y=\frac{-12±8\sqrt{3}}{2} ina he tāpiri te ±. Tāpiri -12 ki te 8\sqrt{3}.
y=4\sqrt{3}-6
Whakawehe -12+8\sqrt{3} ki te 2.
y=\frac{-8\sqrt{3}-12}{2}
Nā, me whakaoti te whārite y=\frac{-12±8\sqrt{3}}{2} ina he tango te ±. Tango 8\sqrt{3} mai i -12.
y=-4\sqrt{3}-6
Whakawehe -12-8\sqrt{3} ki te 2.
y=4\sqrt{3}-6 y=-4\sqrt{3}-6
Kua oti te whārite te whakatau.
y^{2}+12y-12=0
Pahekotia te 4y me 8y, ka 12y.
y^{2}+12y=12
Me tāpiri te 12 ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
y^{2}+12y+6^{2}=12+6^{2}
Whakawehea te 12, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te 6. Nā, tāpiria te pūrua o te 6 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
y^{2}+12y+36=12+36
Pūrua 6.
y^{2}+12y+36=48
Tāpiri 12 ki te 36.
\left(y+6\right)^{2}=48
Tauwehea y^{2}+12y+36. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(y+6\right)^{2}}=\sqrt{48}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
y+6=4\sqrt{3} y+6=-4\sqrt{3}
Whakarūnātia.
y=4\sqrt{3}-6 y=-4\sqrt{3}-6
Me tango 6 mai i ngā taha e rua o te whārite.