Tauwehe
\left(y-3\right)\left(y+6\right)
Aromātai
\left(y-3\right)\left(y+6\right)
Graph
Tohaina
Kua tāruatia ki te papatopenga
a+b=3 ab=1\left(-18\right)=-18
Whakatauwehea te kīanga mā te whakarōpū. Tuatahi, me tuhi anō te kīanga hei y^{2}+ay+by-18. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,18 -2,9 -3,6
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōrunga te a+b, he nui ake te uara pū o te tau tōrunga i tō te tōraro. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -18.
-1+18=17 -2+9=7 -3+6=3
Tātaihia te tapeke mō ia takirua.
a=-3 b=6
Ko te otinga te takirua ka hoatu i te tapeke 3.
\left(y^{2}-3y\right)+\left(6y-18\right)
Tuhia anō te y^{2}+3y-18 hei \left(y^{2}-3y\right)+\left(6y-18\right).
y\left(y-3\right)+6\left(y-3\right)
Tauwehea te y i te tuatahi me te 6 i te rōpū tuarua.
\left(y-3\right)\left(y+6\right)
Whakatauwehea atu te kīanga pātahi y-3 mā te whakamahi i te āhuatanga tātai tohatoha.
y^{2}+3y-18=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
y=\frac{-3±\sqrt{3^{2}-4\left(-18\right)}}{2}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
y=\frac{-3±\sqrt{9-4\left(-18\right)}}{2}
Pūrua 3.
y=\frac{-3±\sqrt{9+72}}{2}
Whakareatia -4 ki te -18.
y=\frac{-3±\sqrt{81}}{2}
Tāpiri 9 ki te 72.
y=\frac{-3±9}{2}
Tuhia te pūtakerua o te 81.
y=\frac{6}{2}
Nā, me whakaoti te whārite y=\frac{-3±9}{2} ina he tāpiri te ±. Tāpiri -3 ki te 9.
y=3
Whakawehe 6 ki te 2.
y=-\frac{12}{2}
Nā, me whakaoti te whārite y=\frac{-3±9}{2} ina he tango te ±. Tango 9 mai i -3.
y=-6
Whakawehe -12 ki te 2.
y^{2}+3y-18=\left(y-3\right)\left(y-\left(-6\right)\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te 3 mō te x_{1} me te -6 mō te x_{2}.
y^{2}+3y-18=\left(y-3\right)\left(y+6\right)
Whakamāmātia ngā kīanga katoa o te āhua p-\left(-q\right) ki te p+q.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}