Tīpoka ki ngā ihirangi matua
Tauwehe
Tick mark Image
Aromātai
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

y\left(y+3\right)
Tauwehea te y.
y^{2}+3y=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
y=\frac{-3±\sqrt{3^{2}}}{2}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
y=\frac{-3±3}{2}
Tuhia te pūtakerua o te 3^{2}.
y=\frac{0}{2}
Nā, me whakaoti te whārite y=\frac{-3±3}{2} ina he tāpiri te ±. Tāpiri -3 ki te 3.
y=0
Whakawehe 0 ki te 2.
y=-\frac{6}{2}
Nā, me whakaoti te whārite y=\frac{-3±3}{2} ina he tango te ±. Tango 3 mai i -3.
y=-3
Whakawehe -6 ki te 2.
y^{2}+3y=y\left(y-\left(-3\right)\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te 0 mō te x_{1} me te -3 mō te x_{2}.
y^{2}+3y=y\left(y+3\right)
Whakamāmātia ngā kīanga katoa o te āhua p-\left(-q\right) ki te p+q.