Tīpoka ki ngā ihirangi matua
Tauwehe
Tick mark Image
Aromātai
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

y^{2}+17y+5=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
y=\frac{-17±\sqrt{17^{2}-4\times 5}}{2}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
y=\frac{-17±\sqrt{289-4\times 5}}{2}
Pūrua 17.
y=\frac{-17±\sqrt{289-20}}{2}
Whakareatia -4 ki te 5.
y=\frac{-17±\sqrt{269}}{2}
Tāpiri 289 ki te -20.
y=\frac{\sqrt{269}-17}{2}
Nā, me whakaoti te whārite y=\frac{-17±\sqrt{269}}{2} ina he tāpiri te ±. Tāpiri -17 ki te \sqrt{269}.
y=\frac{-\sqrt{269}-17}{2}
Nā, me whakaoti te whārite y=\frac{-17±\sqrt{269}}{2} ina he tango te ±. Tango \sqrt{269} mai i -17.
y^{2}+17y+5=\left(y-\frac{\sqrt{269}-17}{2}\right)\left(y-\frac{-\sqrt{269}-17}{2}\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te \frac{-17+\sqrt{269}}{2} mō te x_{1} me te \frac{-17-\sqrt{269}}{2} mō te x_{2}.