Whakaoti mō y (complex solution)
y=\sqrt{26}-6\approx -0.900980486
y=-\left(\sqrt{26}+6\right)\approx -11.099019514
Whakaoti mō y
y=\sqrt{26}-6\approx -0.900980486
y=-\sqrt{26}-6\approx -11.099019514
Graph
Tohaina
Kua tāruatia ki te papatopenga
y^{2}+10+12y=0
Me tāpiri te 12y ki ngā taha e rua.
y^{2}+12y+10=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
y=\frac{-12±\sqrt{12^{2}-4\times 10}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 12 mō b, me 10 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-12±\sqrt{144-4\times 10}}{2}
Pūrua 12.
y=\frac{-12±\sqrt{144-40}}{2}
Whakareatia -4 ki te 10.
y=\frac{-12±\sqrt{104}}{2}
Tāpiri 144 ki te -40.
y=\frac{-12±2\sqrt{26}}{2}
Tuhia te pūtakerua o te 104.
y=\frac{2\sqrt{26}-12}{2}
Nā, me whakaoti te whārite y=\frac{-12±2\sqrt{26}}{2} ina he tāpiri te ±. Tāpiri -12 ki te 2\sqrt{26}.
y=\sqrt{26}-6
Whakawehe -12+2\sqrt{26} ki te 2.
y=\frac{-2\sqrt{26}-12}{2}
Nā, me whakaoti te whārite y=\frac{-12±2\sqrt{26}}{2} ina he tango te ±. Tango 2\sqrt{26} mai i -12.
y=-\sqrt{26}-6
Whakawehe -12-2\sqrt{26} ki te 2.
y=\sqrt{26}-6 y=-\sqrt{26}-6
Kua oti te whārite te whakatau.
y^{2}+10+12y=0
Me tāpiri te 12y ki ngā taha e rua.
y^{2}+12y=-10
Tangohia te 10 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
y^{2}+12y+6^{2}=-10+6^{2}
Whakawehea te 12, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te 6. Nā, tāpiria te pūrua o te 6 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
y^{2}+12y+36=-10+36
Pūrua 6.
y^{2}+12y+36=26
Tāpiri -10 ki te 36.
\left(y+6\right)^{2}=26
Tauwehea y^{2}+12y+36. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(y+6\right)^{2}}=\sqrt{26}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
y+6=\sqrt{26} y+6=-\sqrt{26}
Whakarūnātia.
y=\sqrt{26}-6 y=-\sqrt{26}-6
Me tango 6 mai i ngā taha e rua o te whārite.
y^{2}+10+12y=0
Me tāpiri te 12y ki ngā taha e rua.
y^{2}+12y+10=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
y=\frac{-12±\sqrt{12^{2}-4\times 10}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 12 mō b, me 10 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-12±\sqrt{144-4\times 10}}{2}
Pūrua 12.
y=\frac{-12±\sqrt{144-40}}{2}
Whakareatia -4 ki te 10.
y=\frac{-12±\sqrt{104}}{2}
Tāpiri 144 ki te -40.
y=\frac{-12±2\sqrt{26}}{2}
Tuhia te pūtakerua o te 104.
y=\frac{2\sqrt{26}-12}{2}
Nā, me whakaoti te whārite y=\frac{-12±2\sqrt{26}}{2} ina he tāpiri te ±. Tāpiri -12 ki te 2\sqrt{26}.
y=\sqrt{26}-6
Whakawehe -12+2\sqrt{26} ki te 2.
y=\frac{-2\sqrt{26}-12}{2}
Nā, me whakaoti te whārite y=\frac{-12±2\sqrt{26}}{2} ina he tango te ±. Tango 2\sqrt{26} mai i -12.
y=-\sqrt{26}-6
Whakawehe -12-2\sqrt{26} ki te 2.
y=\sqrt{26}-6 y=-\sqrt{26}-6
Kua oti te whārite te whakatau.
y^{2}+10+12y=0
Me tāpiri te 12y ki ngā taha e rua.
y^{2}+12y=-10
Tangohia te 10 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
y^{2}+12y+6^{2}=-10+6^{2}
Whakawehea te 12, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te 6. Nā, tāpiria te pūrua o te 6 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
y^{2}+12y+36=-10+36
Pūrua 6.
y^{2}+12y+36=26
Tāpiri -10 ki te 36.
\left(y+6\right)^{2}=26
Tauwehea y^{2}+12y+36. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(y+6\right)^{2}}=\sqrt{26}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
y+6=\sqrt{26} y+6=-\sqrt{26}
Whakarūnātia.
y=\sqrt{26}-6 y=-\sqrt{26}-6
Me tango 6 mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}