Tīpoka ki ngā ihirangi matua
Whakaoti mō y (complex solution)
Tick mark Image
Whakaoti mō y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

y^{2}+10+12y=0
Me tāpiri te 12y ki ngā taha e rua.
y^{2}+12y+10=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
y=\frac{-12±\sqrt{12^{2}-4\times 10}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 12 mō b, me 10 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-12±\sqrt{144-4\times 10}}{2}
Pūrua 12.
y=\frac{-12±\sqrt{144-40}}{2}
Whakareatia -4 ki te 10.
y=\frac{-12±\sqrt{104}}{2}
Tāpiri 144 ki te -40.
y=\frac{-12±2\sqrt{26}}{2}
Tuhia te pūtakerua o te 104.
y=\frac{2\sqrt{26}-12}{2}
Nā, me whakaoti te whārite y=\frac{-12±2\sqrt{26}}{2} ina he tāpiri te ±. Tāpiri -12 ki te 2\sqrt{26}.
y=\sqrt{26}-6
Whakawehe -12+2\sqrt{26} ki te 2.
y=\frac{-2\sqrt{26}-12}{2}
Nā, me whakaoti te whārite y=\frac{-12±2\sqrt{26}}{2} ina he tango te ±. Tango 2\sqrt{26} mai i -12.
y=-\sqrt{26}-6
Whakawehe -12-2\sqrt{26} ki te 2.
y=\sqrt{26}-6 y=-\sqrt{26}-6
Kua oti te whārite te whakatau.
y^{2}+10+12y=0
Me tāpiri te 12y ki ngā taha e rua.
y^{2}+12y=-10
Tangohia te 10 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
y^{2}+12y+6^{2}=-10+6^{2}
Whakawehea te 12, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te 6. Nā, tāpiria te pūrua o te 6 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
y^{2}+12y+36=-10+36
Pūrua 6.
y^{2}+12y+36=26
Tāpiri -10 ki te 36.
\left(y+6\right)^{2}=26
Tauwehea y^{2}+12y+36. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(y+6\right)^{2}}=\sqrt{26}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
y+6=\sqrt{26} y+6=-\sqrt{26}
Whakarūnātia.
y=\sqrt{26}-6 y=-\sqrt{26}-6
Me tango 6 mai i ngā taha e rua o te whārite.
y^{2}+10+12y=0
Me tāpiri te 12y ki ngā taha e rua.
y^{2}+12y+10=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
y=\frac{-12±\sqrt{12^{2}-4\times 10}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 12 mō b, me 10 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-12±\sqrt{144-4\times 10}}{2}
Pūrua 12.
y=\frac{-12±\sqrt{144-40}}{2}
Whakareatia -4 ki te 10.
y=\frac{-12±\sqrt{104}}{2}
Tāpiri 144 ki te -40.
y=\frac{-12±2\sqrt{26}}{2}
Tuhia te pūtakerua o te 104.
y=\frac{2\sqrt{26}-12}{2}
Nā, me whakaoti te whārite y=\frac{-12±2\sqrt{26}}{2} ina he tāpiri te ±. Tāpiri -12 ki te 2\sqrt{26}.
y=\sqrt{26}-6
Whakawehe -12+2\sqrt{26} ki te 2.
y=\frac{-2\sqrt{26}-12}{2}
Nā, me whakaoti te whārite y=\frac{-12±2\sqrt{26}}{2} ina he tango te ±. Tango 2\sqrt{26} mai i -12.
y=-\sqrt{26}-6
Whakawehe -12-2\sqrt{26} ki te 2.
y=\sqrt{26}-6 y=-\sqrt{26}-6
Kua oti te whārite te whakatau.
y^{2}+10+12y=0
Me tāpiri te 12y ki ngā taha e rua.
y^{2}+12y=-10
Tangohia te 10 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
y^{2}+12y+6^{2}=-10+6^{2}
Whakawehea te 12, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te 6. Nā, tāpiria te pūrua o te 6 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
y^{2}+12y+36=-10+36
Pūrua 6.
y^{2}+12y+36=26
Tāpiri -10 ki te 36.
\left(y+6\right)^{2}=26
Tauwehea y^{2}+12y+36. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(y+6\right)^{2}}=\sqrt{26}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
y+6=\sqrt{26} y+6=-\sqrt{26}
Whakarūnātia.
y=\sqrt{26}-6 y=-\sqrt{26}-6
Me tango 6 mai i ngā taha e rua o te whārite.