Tīpoka ki ngā ihirangi matua
Whakaoti mō c
Tick mark Image
Whakaoti mō x
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{\mathrm{d}}{\mathrm{d}x}(y)=cx^{2}e^{-3x}+2xe^{-3x}+2e^{-3x}
Whakamahia te āhuatanga tohatoha hei whakarea te cx^{2}+2x+2 ki te e^{-3x}.
cx^{2}e^{-3x}+2xe^{-3x}+2e^{-3x}=\frac{\mathrm{d}}{\mathrm{d}x}(y)
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
cx^{2}e^{-3x}+2e^{-3x}=\frac{\mathrm{d}}{\mathrm{d}x}(y)-2xe^{-3x}
Tangohia te 2xe^{-3x} mai i ngā taha e rua.
cx^{2}e^{-3x}=\frac{\mathrm{d}}{\mathrm{d}x}(y)-2xe^{-3x}-2e^{-3x}
Tangohia te 2e^{-3x} mai i ngā taha e rua.
\frac{x^{2}}{e^{3x}}c=\frac{-2x-2}{e^{3x}}
He hanga arowhānui tō te whārite.
\frac{\frac{x^{2}}{e^{3x}}ce^{3x}}{x^{2}}=\frac{\left(-\frac{2\left(x+1\right)}{e^{3x}}\right)e^{3x}}{x^{2}}
Whakawehea ngā taha e rua ki te x^{2}e^{-3x}.
c=\frac{\left(-\frac{2\left(x+1\right)}{e^{3x}}\right)e^{3x}}{x^{2}}
Mā te whakawehe ki te x^{2}e^{-3x} ka wetekia te whakareanga ki te x^{2}e^{-3x}.
c=-\frac{2\left(x+1\right)}{x^{2}}
Whakawehe -\frac{2\left(1+x\right)}{e^{3x}} ki te x^{2}e^{-3x}.