Tīpoka ki ngā ihirangi matua
Kimi Pārōnaki e ai ki y
Tick mark Image
Aromātai
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\sqrt[3]{y}\frac{\mathrm{d}}{\mathrm{d}y}(y^{\frac{3}{5}})+y^{\frac{3}{5}}\frac{\mathrm{d}}{\mathrm{d}y}(\sqrt[3]{y})
Mo ētahi pānga e rua e taea ana te pārōnaki, ko te pārōnaki o te hua o ngā pānga e rua ko te pānga tuatahi whakareatia ki te pārōnaki o te pānga tuarua tāpiri i te pānga tuarua whakareatia ki te pārōnaki o te mea tuatahi.
\sqrt[3]{y}\times \frac{3}{5}y^{\frac{3}{5}-1}+y^{\frac{3}{5}}\times \frac{1}{3}y^{\frac{1}{3}-1}
Ko te pārōnaki o tētahi pūrau ko te tapeke o ngā pārōnaki o ōna kīanga tau. Ko te pārōnaki o tētahi kīanga tau pūmau ko 0. Ko te pārōnaki o te ax^{n} ko te nax^{n-1}.
\sqrt[3]{y}\times \frac{3}{5}y^{-\frac{2}{5}}+y^{\frac{3}{5}}\times \frac{1}{3}y^{-\frac{2}{3}}
Whakarūnātia.
\frac{3}{5}y^{\frac{1}{3}-\frac{2}{5}}+\frac{1}{3}y^{\frac{3}{5}-\frac{2}{3}}
Hei whakarea pū o te pūtake ōrite, tāpiri ana taupū.
\frac{3}{5}y^{-\frac{1}{15}}+\frac{1}{3}y^{-\frac{1}{15}}
Whakarūnātia.
y^{\frac{14}{15}}
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te \frac{1}{3} me te \frac{3}{5} kia riro ai te \frac{14}{15}.