Whakaoti mō x (complex solution)
\left\{\begin{matrix}\\x=-1\text{, }&\text{unconditionally}\\x\in \mathrm{C}\text{, }&y=1\end{matrix}\right.
Whakaoti mō y (complex solution)
\left\{\begin{matrix}\\y=1\text{, }&\text{unconditionally}\\y\in \mathrm{C}\text{, }&x=-1\end{matrix}\right.
Whakaoti mō x
\left\{\begin{matrix}\\x=-1\text{, }&\text{unconditionally}\\x\in \mathrm{R}\text{, }&y=1\end{matrix}\right.
Whakaoti mō y
\left\{\begin{matrix}\\y=1\text{, }&\text{unconditionally}\\y\in \mathrm{R}\text{, }&x=-1\end{matrix}\right.
Graph
Tohaina
Kua tāruatia ki te papatopenga
x-xy+1=y
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
x-xy=y-1
Tangohia te 1 mai i ngā taha e rua.
\left(1-y\right)x=y-1
Pahekotia ngā kīanga tau katoa e whai ana i te x.
\frac{\left(1-y\right)x}{1-y}=\frac{y-1}{1-y}
Whakawehea ngā taha e rua ki te 1-y.
x=\frac{y-1}{1-y}
Mā te whakawehe ki te 1-y ka wetekia te whakareanga ki te 1-y.
x=-1
Whakawehe y-1 ki te 1-y.
y+xy=x+1
Me tāpiri te xy ki ngā taha e rua.
\left(1+x\right)y=x+1
Pahekotia ngā kīanga tau katoa e whai ana i te y.
\left(x+1\right)y=x+1
He hanga arowhānui tō te whārite.
\frac{\left(x+1\right)y}{x+1}=\frac{x+1}{x+1}
Whakawehea ngā taha e rua ki te 1+x.
y=\frac{x+1}{x+1}
Mā te whakawehe ki te 1+x ka wetekia te whakareanga ki te 1+x.
y=1
Whakawehe 1+x ki te 1+x.
x-xy+1=y
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
x-xy=y-1
Tangohia te 1 mai i ngā taha e rua.
\left(1-y\right)x=y-1
Pahekotia ngā kīanga tau katoa e whai ana i te x.
\frac{\left(1-y\right)x}{1-y}=\frac{y-1}{1-y}
Whakawehea ngā taha e rua ki te 1-y.
x=\frac{y-1}{1-y}
Mā te whakawehe ki te 1-y ka wetekia te whakareanga ki te 1-y.
x=-1
Whakawehe y-1 ki te 1-y.
y+xy=x+1
Me tāpiri te xy ki ngā taha e rua.
\left(1+x\right)y=x+1
Pahekotia ngā kīanga tau katoa e whai ana i te y.
\left(x+1\right)y=x+1
He hanga arowhānui tō te whārite.
\frac{\left(x+1\right)y}{x+1}=\frac{x+1}{x+1}
Whakawehea ngā taha e rua ki te 1+x.
y=\frac{x+1}{x+1}
Mā te whakawehe ki te 1+x ka wetekia te whakareanga ki te 1+x.
y=1
Whakawehe 1+x ki te 1+x.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}