Whakaoti mō a (complex solution)
\left\{\begin{matrix}a=-\frac{x^{2}-3x-y-4}{x+1}\text{, }&x\neq -1\\a\in \mathrm{C}\text{, }&y=0\text{ and }x=-1\end{matrix}\right.
Whakaoti mō a
\left\{\begin{matrix}a=-\frac{x^{2}-3x-y-4}{x+1}\text{, }&x\neq -1\\a\in \mathrm{R}\text{, }&y=0\text{ and }x=-1\end{matrix}\right.
Whakaoti mō x (complex solution)
x=\frac{\sqrt{4y+a^{2}-10a+25}-a+3}{2}
x=\frac{-\sqrt{4y+a^{2}-10a+25}-a+3}{2}
Whakaoti mō x
x=\frac{\sqrt{4y+a^{2}-10a+25}-a+3}{2}
x=\frac{-\sqrt{4y+a^{2}-10a+25}-a+3}{2}\text{, }y\geq -\frac{\left(a-5\right)^{2}}{4}
Graph
Tohaina
Kua tāruatia ki te papatopenga
y=x^{2}+ax-3x+a-4
Whakamahia te āhuatanga tohatoha hei whakarea te a-3 ki te x.
x^{2}+ax-3x+a-4=y
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
ax-3x+a-4=y-x^{2}
Tangohia te x^{2} mai i ngā taha e rua.
ax+a-4=y-x^{2}+3x
Me tāpiri te 3x ki ngā taha e rua.
ax+a=y-x^{2}+3x+4
Me tāpiri te 4 ki ngā taha e rua.
\left(x+1\right)a=y-x^{2}+3x+4
Pahekotia ngā kīanga tau katoa e whai ana i te a.
\left(x+1\right)a=4+y+3x-x^{2}
He hanga arowhānui tō te whārite.
\frac{\left(x+1\right)a}{x+1}=\frac{4+y+3x-x^{2}}{x+1}
Whakawehea ngā taha e rua ki te x+1.
a=\frac{4+y+3x-x^{2}}{x+1}
Mā te whakawehe ki te x+1 ka wetekia te whakareanga ki te x+1.
y=x^{2}+ax-3x+a-4
Whakamahia te āhuatanga tohatoha hei whakarea te a-3 ki te x.
x^{2}+ax-3x+a-4=y
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
ax-3x+a-4=y-x^{2}
Tangohia te x^{2} mai i ngā taha e rua.
ax+a-4=y-x^{2}+3x
Me tāpiri te 3x ki ngā taha e rua.
ax+a=y-x^{2}+3x+4
Me tāpiri te 4 ki ngā taha e rua.
\left(x+1\right)a=y-x^{2}+3x+4
Pahekotia ngā kīanga tau katoa e whai ana i te a.
\left(x+1\right)a=4+y+3x-x^{2}
He hanga arowhānui tō te whārite.
\frac{\left(x+1\right)a}{x+1}=\frac{4+y+3x-x^{2}}{x+1}
Whakawehea ngā taha e rua ki te x+1.
a=\frac{4+y+3x-x^{2}}{x+1}
Mā te whakawehe ki te x+1 ka wetekia te whakareanga ki te x+1.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}