Whakaoti mō a (complex solution)
\left\{\begin{matrix}a=\frac{y-bx^{2}}{x^{3}}\text{, }&x\neq 0\\a\in \mathrm{C}\text{, }&y=0\text{ and }x=0\end{matrix}\right.
Whakaoti mō b (complex solution)
\left\{\begin{matrix}b=-ax+\frac{y}{x^{2}}\text{, }&x\neq 0\\b\in \mathrm{C}\text{, }&y=0\text{ and }x=0\end{matrix}\right.
Whakaoti mō a
\left\{\begin{matrix}a=\frac{y-bx^{2}}{x^{3}}\text{, }&x\neq 0\\a\in \mathrm{R}\text{, }&y=0\text{ and }x=0\end{matrix}\right.
Whakaoti mō b
\left\{\begin{matrix}b=-ax+\frac{y}{x^{2}}\text{, }&x\neq 0\\b\in \mathrm{R}\text{, }&y=0\text{ and }x=0\end{matrix}\right.
Graph
Tohaina
Kua tāruatia ki te papatopenga
ax^{3}+bx^{2}=y
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
ax^{3}=y-bx^{2}
Tangohia te bx^{2} mai i ngā taha e rua.
ax^{3}=-bx^{2}+y
Whakaraupapatia anō ngā kīanga tau.
x^{3}a=y-bx^{2}
He hanga arowhānui tō te whārite.
\frac{x^{3}a}{x^{3}}=\frac{y-bx^{2}}{x^{3}}
Whakawehea ngā taha e rua ki te x^{3}.
a=\frac{y-bx^{2}}{x^{3}}
Mā te whakawehe ki te x^{3} ka wetekia te whakareanga ki te x^{3}.
a=-\frac{b}{x}+\frac{y}{x^{3}}
Whakawehe y-bx^{2} ki te x^{3}.
ax^{3}+bx^{2}=y
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
bx^{2}=y-ax^{3}
Tangohia te ax^{3} mai i ngā taha e rua.
bx^{2}=-ax^{3}+y
Whakaraupapatia anō ngā kīanga tau.
x^{2}b=y-ax^{3}
He hanga arowhānui tō te whārite.
\frac{x^{2}b}{x^{2}}=\frac{y-ax^{3}}{x^{2}}
Whakawehea ngā taha e rua ki te x^{2}.
b=\frac{y-ax^{3}}{x^{2}}
Mā te whakawehe ki te x^{2} ka wetekia te whakareanga ki te x^{2}.
b=-ax+\frac{y}{x^{2}}
Whakawehe y-ax^{3} ki te x^{2}.
ax^{3}+bx^{2}=y
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
ax^{3}=y-bx^{2}
Tangohia te bx^{2} mai i ngā taha e rua.
ax^{3}=-bx^{2}+y
Whakaraupapatia anō ngā kīanga tau.
x^{3}a=y-bx^{2}
He hanga arowhānui tō te whārite.
\frac{x^{3}a}{x^{3}}=\frac{y-bx^{2}}{x^{3}}
Whakawehea ngā taha e rua ki te x^{3}.
a=\frac{y-bx^{2}}{x^{3}}
Mā te whakawehe ki te x^{3} ka wetekia te whakareanga ki te x^{3}.
a=-\frac{b}{x}+\frac{y}{x^{3}}
Whakawehe y-bx^{2} ki te x^{3}.
ax^{3}+bx^{2}=y
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
bx^{2}=y-ax^{3}
Tangohia te ax^{3} mai i ngā taha e rua.
bx^{2}=-ax^{3}+y
Whakaraupapatia anō ngā kīanga tau.
x^{2}b=y-ax^{3}
He hanga arowhānui tō te whārite.
\frac{x^{2}b}{x^{2}}=\frac{y-ax^{3}}{x^{2}}
Whakawehea ngā taha e rua ki te x^{2}.
b=\frac{y-ax^{3}}{x^{2}}
Mā te whakawehe ki te x^{2} ka wetekia te whakareanga ki te x^{2}.
b=-ax+\frac{y}{x^{2}}
Whakawehe y-ax^{3} ki te x^{2}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}